Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing Charge Mobility in Single Molecular Organic Crystals

22.03.2005


Studies may help identify best materials for variety of future electronics applications



Flexible displays that can be folded up in your pocket? More accurate biological and chemical sensors? Biocompatible electronics? In research that may help determine the best materials for a wide range of future electronics applications, a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory will report on the intrinsic electronic properties of molecular organic crystals at the March 2005 meeting of the American Physical Society. Brookhaven materials scientist Vladimir Butko will describe the experimental techniques and key findings on Monday, March 21, at 3:42 p.m. in room 152 of the Los Angeles Convention Center.

Organic materials are particularly attractive for potential applications such as flexible displays, or so-called “electronic paper,” because they are inherently flexible. “Imagine a computer screen that you could crumple or fold like a sheet of plastic film,” Butko says. Yet for this and any other electronics application, the materials must also be able to carry an electric current.


“These organic materials, by themselves, have almost no charge carriers — electrons or “holes” [the absence of electrons] — to carry current,” Butko says. “They act as insulators. But if we inject charge carriers, we can sometimes create organic devices such as field-effect transistors [FETs], through which charge will flow.”

To find out which materials have the best potential for carrying current, Butko has been studying single crystals of molecular organic materials such as pentacene and rubrene. Though these crystals themselves may not have direct applications, they provide the simplest form in which to study the materials’ intrinsic electronic properties — unaffected by factors that might play a role in larger samples such as polycrystalline thin films.

The key, says Butko, is to know whether the injected charge carriers will have a high mobility or stay localized. The most stringent test of localization is to cool such a device to very low temperatures: somewhat close to absolute zero, which is approximately -273 degrees Celsius. At these low temperatures the mobility edge can be probed without the complication of thermal activation -- a process that assists charge carrier transport in semiconductors due to large thermal energy at high temperatures. The studies were done using a physical properties measurement system (PPMS) and electrometers at the Los Alamos National Laboratory.

In his talk, Butko will present first evidence for low-temperature, quasi-temperature-independent transport of injected charge in a crystalline organic FET. “These materials, which also have the highest charge mobility at room temperature among organic FETs, can be most useful for electronic applications,” Butko says.

Once scientists identify the best crystals, they will use thin-film methods to test their applicability for electronic devices from e-paper to large-format display screens.

This research was done in collaboration with Arthur Ramirez, David Lang and Xiaoliu Chi from Bell Laboratories, and Jason Lashley from Los Alamos National Laboratory, and was funded in part by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>