Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Few-walled’ carbon nanotubes said cheap and efficient option for certain applications


North Carolina scientists have found that "thinnest" is not necessarily "best" in rating structure and function of carbon nanotubes, the molecule-sized cylinders that show promise for futuristic technology scaled at a billionths of a meter.

During an American Chemical Society national meeting, researchers at Duke University and Xintek, Inc. of Research Triangle Park, N.C., will report on the synthesis and testing of a new class of nanotubes made up of two to five layers of carbon atoms. The scientists find these "few-walled" carbon nanotubes are structurally nearly as perfect as one carbon atom thick "single-walled" carbon nanotubes, while being cheaper to make than their single-walled cousins, said Duke assistant chemistry professor Jie Liu Liu and his colleagues discovered how to create the tubes within heated streams of alcohol and hydrogen.

Moreover, tests by Liu’s collaborators at Xintek found that few-walled nanotubes can be made to spew out electrons with better performance than current commercial carbon nanotubes, Liu added.

Xintek is already commercializing varieties of carbon nanotubes as "field emitters" that generate electrons to empower portable and miniaturized X-ray sources. Other possible uses for electron field emitters would include-flat panel displays and new kinds of light sources.

Liu will report on the synthesis and evaluation of few-walled nanotubes during a scientific session on polymer nanocomposites (the prefix "nano" referring to billionths of a meter dimensions) beginning at 8 a.m. Pacific Standard Time on Wednesday, March 16, 2005, at the Torrey Room 1 and 2 of the San Diego Marriott Hotel.

The work is being funded by NASA.

Since carbon nanotubes were first discovered in 1991, chemists such as Liu and material scientists such as Xintek co-founder Otto Zhou have been attracted by the potential of these graphite-like nanocylinders to become 21st century wonder materials.

Carbon nanotubes of both single-walled and multi-walled varieties combine ultra miniaturization with exceptionally high structural strength. Their electronic properties can range between metal-like and semiconductor-like, depending on their structural alignments.

Liu’s own laboratory, which is also linked to the University of North Carolina at Chapel Hill-based North Carolina Center for Nanoscale Materials directed by Zhou, who is a UNC-Chapel Hill professor, has evaluated various methods for making nanotubes.

Liu’s teams of researchers have also developed techniques to make exceptionally long single-walled carbon nanotubes for potential use in nanoscale electronic circuitry.

The fact that single-walled carbon nanotubes are composed of just one layer makes them more predictable and reliable for use as precision electronic components. However, Liu said, "The problem is that single-walled nanotubes are very hard to make, and very hard to make in large quantities."

By contrast, "multi-walled nanotubes can be made very easily and in very large quantities, although in most cases they have a lot of structural defects," he added. Because of their ease of manufacture, multi-walled carbon nanotubes are becoming commercially available for uses that can accommodate structural flaws, Liu said.

As an example, he described how using small portions of multi-walled nanotubes in manufacturing plastic auto parts alters the plastic’s electrical charges in a way that makes automotive paint stick more uniformly.

Multi-walled nanotubes are normally encased by 10 to 30 consecutive layers of carbon atoms. But few-walled carbon nanotubes are different, Liu said. "The fact that they are smaller in diameter makes them uniquely suitable for certain applications. They are also more rigid than single-walled nanotubes. And they can be made much, much cheaper than single walled nanotubes."

His Duke laboratory stumbled onto few-walled nanotubes during a failed attempt to make single-walled carbon nanotubes. When the researchers tried growing the single-walled variety in a heated glass tube within a stream of alcohol and hydrogen under the influence of metal catalysts, they grew few-walled nanotubes instead.

Duke and Xintek have applied for a patent on the application of few-walled carbon nanotubes for electron field emission.

Monte Basgall | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>