Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Few-walled’ carbon nanotubes said cheap and efficient option for certain applications

17.03.2005


North Carolina scientists have found that "thinnest" is not necessarily "best" in rating structure and function of carbon nanotubes, the molecule-sized cylinders that show promise for futuristic technology scaled at a billionths of a meter.



During an American Chemical Society national meeting, researchers at Duke University and Xintek, Inc. of Research Triangle Park, N.C., will report on the synthesis and testing of a new class of nanotubes made up of two to five layers of carbon atoms. The scientists find these "few-walled" carbon nanotubes are structurally nearly as perfect as one carbon atom thick "single-walled" carbon nanotubes, while being cheaper to make than their single-walled cousins, said Duke assistant chemistry professor Jie Liu Liu and his colleagues discovered how to create the tubes within heated streams of alcohol and hydrogen.

Moreover, tests by Liu’s collaborators at Xintek found that few-walled nanotubes can be made to spew out electrons with better performance than current commercial carbon nanotubes, Liu added.


Xintek is already commercializing varieties of carbon nanotubes as "field emitters" that generate electrons to empower portable and miniaturized X-ray sources. Other possible uses for electron field emitters would include-flat panel displays and new kinds of light sources.

Liu will report on the synthesis and evaluation of few-walled nanotubes during a scientific session on polymer nanocomposites (the prefix "nano" referring to billionths of a meter dimensions) beginning at 8 a.m. Pacific Standard Time on Wednesday, March 16, 2005, at the Torrey Room 1 and 2 of the San Diego Marriott Hotel.

The work is being funded by NASA.

Since carbon nanotubes were first discovered in 1991, chemists such as Liu and material scientists such as Xintek co-founder Otto Zhou have been attracted by the potential of these graphite-like nanocylinders to become 21st century wonder materials.

Carbon nanotubes of both single-walled and multi-walled varieties combine ultra miniaturization with exceptionally high structural strength. Their electronic properties can range between metal-like and semiconductor-like, depending on their structural alignments.

Liu’s own laboratory, which is also linked to the University of North Carolina at Chapel Hill-based North Carolina Center for Nanoscale Materials directed by Zhou, who is a UNC-Chapel Hill professor, has evaluated various methods for making nanotubes.

Liu’s teams of researchers have also developed techniques to make exceptionally long single-walled carbon nanotubes for potential use in nanoscale electronic circuitry.

The fact that single-walled carbon nanotubes are composed of just one layer makes them more predictable and reliable for use as precision electronic components. However, Liu said, "The problem is that single-walled nanotubes are very hard to make, and very hard to make in large quantities."

By contrast, "multi-walled nanotubes can be made very easily and in very large quantities, although in most cases they have a lot of structural defects," he added. Because of their ease of manufacture, multi-walled carbon nanotubes are becoming commercially available for uses that can accommodate structural flaws, Liu said.

As an example, he described how using small portions of multi-walled nanotubes in manufacturing plastic auto parts alters the plastic’s electrical charges in a way that makes automotive paint stick more uniformly.

Multi-walled nanotubes are normally encased by 10 to 30 consecutive layers of carbon atoms. But few-walled carbon nanotubes are different, Liu said. "The fact that they are smaller in diameter makes them uniquely suitable for certain applications. They are also more rigid than single-walled nanotubes. And they can be made much, much cheaper than single walled nanotubes."

His Duke laboratory stumbled onto few-walled nanotubes during a failed attempt to make single-walled carbon nanotubes. When the researchers tried growing the single-walled variety in a heated glass tube within a stream of alcohol and hydrogen under the influence of metal catalysts, they grew few-walled nanotubes instead.

Duke and Xintek have applied for a patent on the application of few-walled carbon nanotubes for electron field emission.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>