Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study how to make nanomaterial industry environmentally sustainable

17.03.2005


Transmission electron microscopy shows nano-sized particles that form when fullerenes clump together in water. Research is showing what factors affect particle size. Image Courtesy of John Fortner


Transmission electron microscopy shows nano-sized particles that form when fullerenes clump together in water. Research is showing what factors affect particle size. Image Courtesy of John Fortner


Research into making the emerging nanomaterial industry environmentally sustainable is showing promise in a preliminary engineering study conducted at the Georgia Institute of Technology and Rice University.

Under the auspices of the Rice University Center for Biological and Environmental Nanotechnology (CBEN) funded by the National Science Foundation (NSF), researchers have been investigating the potential environmental impact of nanomaterial waste. Specifically, they want to know if they can predict the fate and transport of nanomaterial waste in natural systems, and whether nanomaterials will behave the same as common environmental pollutants. In addition, they want to determine if nanomaterials can be treated before they enter the environment to minimize impact.

Previous research provided information on how structures such as fullerenes clump together in water to form larger particles. This study is the first to show what factors affect the size of these aggregate particles.



Researchers picked fullerenes, molecules composed of 60 carbon atoms, as their model carbon-based nanomaterial. Fullerenes have a potentially broad range of applications, including their use in pharmaceuticals, as lubricants, as semiconductors and in energy conversion. Mass commercial production of fullerenes may get under way internationally in just two years.

"This research is providing the information to make practices sustainable when fullerene production comes on line," said John Fortner, a Georgia Tech research scientist and Rice University Ph.D. student. "It’s our goal to minimize environmental impact in contrast to the pollution caused in the past by, for example, dry cleaning industry practices.

"It is a new thing to have research funding to look at a material’s potential as a pollutant, how to minimize it’s environmental impact and make the industry sustainable," Fortner added. "It’s really the right thing to do. You know, ’An ounce of prevention is worth a pound of cure.’"

Fortner will present findings of the research team March 16 at the American Chemical Society’s 229th national meeting in San Diego, Calif. The team includes Joe Hughes, chair of the Georgia Tech School of Civil and Environmental Engineering and a former Rice University professor.

Though much is known about fullerenes, little is known about their fate when released into the environment because they have not been produced on an industrial scale. For now, the U.S. Occupational Safety and Health Administration (OSHA) calls for handling fullerenes in the same way as carbon black, which is similar to graphite and very different in properties from fullerenes – in particular the C60 "buckyball" carbon molecules that Fortner and his colleagues are studying.

"Fullerenes are virtually insoluble in water, yet most biological and environmental systems are based around water," Fortner noted. "Researchers thought fullerenes couldn’t be transported by water because they are so hydrophobic. We thought they would simply stick to soil or other organic material. But research shows this is actually not the case. When fullerenes, such as C60, come in contact with water, they form aggregates at the nanoscale. We call it nano-C60."

In their study, Fortner and his colleagues devised several novel applications of imaging techniques to characterize the physical and chemical formation of nano-C60 particles in water mixed with the organic solvent THF. Using cryoTEM (transmission electron microscopy), researchers froze samples of the solution and examined slices of them to determine the effects of various parameters on particle size.

The nano-C60 particles that formed were 20 to 500 nanometers across and retained the same properties as C60 molecules – a determination researchers made using nuclear magnetic resonance imaging. This finding is significant because pure C60 is recoverable, therefore enhancing the promise of sustainable fullerene production practices, Fortner noted. Also, electron and powder diffraction techniques revealed that nano-C60 has a particular crystalline structure. These findings reinforced previous research done elsewhere.

"Our work builds on previous findings in an environmental engineering context," Fortner explained. "We wanted to know about nano-C60 formation under a variety of ambient natural conditions."

Researchers found that changing the pH of the water with which C60 is mixed affected particle size. A higher pH, such as 9, yielded smaller particles, and a lower pH, such as 5, yielded larger particles. Also, the rate at which C60 is mixed with water affected particle size. A slower rate resulted in larger particles, and a faster rate produced smaller ones.

"This research is the first to show control over the particle formation processes based on these parameters," Fortner said. Researchers also examined the stability of these particles as a function of ion concentration in the water. Because nano-C60 particles rely on a negatively charged surface to remain suspended in water, the presence of elevated concentrations of ions, such as dissolved NaCl (table salt), can render the surface neutral. If that happens, nano-C60 particles sink to the bottom of the solution container and form a solid glob, Fortner explained.

"In the laboratory, scientists typically use de-ionized water, but that’s not the case in nature," Fortner said. "At some level, salt is present, even in groundwater. We found that even in water with the normal salt concentration of groundwater, nano-C60 particles still remain suspended for months. However, in simulated sea water, the particles are neutralized and sink in a matter of hours." Researchers don’t yet know the full implications of this finding, Fortner added.

"We’ve just developed a conceptual model so far, and it doesn’t take into account all of the unknowns or heterogeneity found in the environment," Fortner said. "We studied the most controlled situations and got preliminary data."

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>