Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study how to make nanomaterial industry environmentally sustainable

17.03.2005


Transmission electron microscopy shows nano-sized particles that form when fullerenes clump together in water. Research is showing what factors affect particle size. Image Courtesy of John Fortner


Transmission electron microscopy shows nano-sized particles that form when fullerenes clump together in water. Research is showing what factors affect particle size. Image Courtesy of John Fortner


Research into making the emerging nanomaterial industry environmentally sustainable is showing promise in a preliminary engineering study conducted at the Georgia Institute of Technology and Rice University.

Under the auspices of the Rice University Center for Biological and Environmental Nanotechnology (CBEN) funded by the National Science Foundation (NSF), researchers have been investigating the potential environmental impact of nanomaterial waste. Specifically, they want to know if they can predict the fate and transport of nanomaterial waste in natural systems, and whether nanomaterials will behave the same as common environmental pollutants. In addition, they want to determine if nanomaterials can be treated before they enter the environment to minimize impact.

Previous research provided information on how structures such as fullerenes clump together in water to form larger particles. This study is the first to show what factors affect the size of these aggregate particles.



Researchers picked fullerenes, molecules composed of 60 carbon atoms, as their model carbon-based nanomaterial. Fullerenes have a potentially broad range of applications, including their use in pharmaceuticals, as lubricants, as semiconductors and in energy conversion. Mass commercial production of fullerenes may get under way internationally in just two years.

"This research is providing the information to make practices sustainable when fullerene production comes on line," said John Fortner, a Georgia Tech research scientist and Rice University Ph.D. student. "It’s our goal to minimize environmental impact in contrast to the pollution caused in the past by, for example, dry cleaning industry practices.

"It is a new thing to have research funding to look at a material’s potential as a pollutant, how to minimize it’s environmental impact and make the industry sustainable," Fortner added. "It’s really the right thing to do. You know, ’An ounce of prevention is worth a pound of cure.’"

Fortner will present findings of the research team March 16 at the American Chemical Society’s 229th national meeting in San Diego, Calif. The team includes Joe Hughes, chair of the Georgia Tech School of Civil and Environmental Engineering and a former Rice University professor.

Though much is known about fullerenes, little is known about their fate when released into the environment because they have not been produced on an industrial scale. For now, the U.S. Occupational Safety and Health Administration (OSHA) calls for handling fullerenes in the same way as carbon black, which is similar to graphite and very different in properties from fullerenes – in particular the C60 "buckyball" carbon molecules that Fortner and his colleagues are studying.

"Fullerenes are virtually insoluble in water, yet most biological and environmental systems are based around water," Fortner noted. "Researchers thought fullerenes couldn’t be transported by water because they are so hydrophobic. We thought they would simply stick to soil or other organic material. But research shows this is actually not the case. When fullerenes, such as C60, come in contact with water, they form aggregates at the nanoscale. We call it nano-C60."

In their study, Fortner and his colleagues devised several novel applications of imaging techniques to characterize the physical and chemical formation of nano-C60 particles in water mixed with the organic solvent THF. Using cryoTEM (transmission electron microscopy), researchers froze samples of the solution and examined slices of them to determine the effects of various parameters on particle size.

The nano-C60 particles that formed were 20 to 500 nanometers across and retained the same properties as C60 molecules – a determination researchers made using nuclear magnetic resonance imaging. This finding is significant because pure C60 is recoverable, therefore enhancing the promise of sustainable fullerene production practices, Fortner noted. Also, electron and powder diffraction techniques revealed that nano-C60 has a particular crystalline structure. These findings reinforced previous research done elsewhere.

"Our work builds on previous findings in an environmental engineering context," Fortner explained. "We wanted to know about nano-C60 formation under a variety of ambient natural conditions."

Researchers found that changing the pH of the water with which C60 is mixed affected particle size. A higher pH, such as 9, yielded smaller particles, and a lower pH, such as 5, yielded larger particles. Also, the rate at which C60 is mixed with water affected particle size. A slower rate resulted in larger particles, and a faster rate produced smaller ones.

"This research is the first to show control over the particle formation processes based on these parameters," Fortner said. Researchers also examined the stability of these particles as a function of ion concentration in the water. Because nano-C60 particles rely on a negatively charged surface to remain suspended in water, the presence of elevated concentrations of ions, such as dissolved NaCl (table salt), can render the surface neutral. If that happens, nano-C60 particles sink to the bottom of the solution container and form a solid glob, Fortner explained.

"In the laboratory, scientists typically use de-ionized water, but that’s not the case in nature," Fortner said. "At some level, salt is present, even in groundwater. We found that even in water with the normal salt concentration of groundwater, nano-C60 particles still remain suspended for months. However, in simulated sea water, the particles are neutralized and sink in a matter of hours." Researchers don’t yet know the full implications of this finding, Fortner added.

"We’ve just developed a conceptual model so far, and it doesn’t take into account all of the unknowns or heterogeneity found in the environment," Fortner said. "We studied the most controlled situations and got preliminary data."

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>