Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Type of Strong, Lightweight Metallic Material

10.03.2005


An engineering professor at the University of California, San Diego has described in the March issue of JOM (the Journal of the Minerals, Metals and Materials Society) the unique properties of a new type of metallic laminate that can serve as armor and as a replacement for beryllium, a strong but toxic metal commonly used in demanding aerospace applications.



“The new material we developed is environmentally safe, and while its stiffness equals that of steel, it’s only half as dense,” said Kenneth S. Vecchio, author of the paper and a professor of mechanical and aerospace engineering in UCSD’s Jacobs School of Engineering. “It performs spectacularly in our depth-of-penetration ballistics tests, but we think its greatest potential may derive from its unique ability to have its structure and properties tailored to meet a wide variety of application-specific engineering requirements.”

The new material is made primarily of two lightweight metals. Vecchio alternated layers of aluminum and titanium alloy foils, and compressed and heated them in an inexpensive energy-conserving process. The resulting reaction generated a laminate with two layers: a hard ceramic-like “intermetallic” layer of titanium aluminide, and a pliable layer of residual titanium alloy. The layers can be stacked like 1-millimeter-thick pages of a book, and even contoured into desired shapes prior to heating.


The laminate architecture was chosen by Vecchio to mimic the internal structure of the tough shell of the red abalone. This science-mimicking-biology approach is one of an increasing number of biomimetic research efforts at the Jacobs School of Engineering. Faculty members are studying structural and functional designs of everything from mollusk shells and bird bills to sea urchin spines and other biocomposites in the development of new smart materials and devices.

The red abalone, a seaweed-eating snail prized as a source of mother-of-pearl jewelry, is found off the coast of California. The mollusk makes its dome-shaped home by slowly adding layers of brittle calcium carbonate, each about one-thousandth the thickness of a strand of human hair, between even thinner layers of a stretchy protein adhesive.

“The intermetallic phase of titanium aluminide is the complement of the mollusk’s hard calcium carbonate phase, and the titanium alloy layer mimics the abalone shell’s compliant protein layers,” said Vecchio.

In order to test the bullet-stopping capability of his new material, Vecchio fired a heavy tungsten alloy rod into a three-quarters-inch (2 centimeters) thick sample at a velocity of about 2,000 mph (900 meters per second). The rod penetrated only half the thickness of the test sample. Vecchio said the laminate performs surprisingly well as armor and has potential as a structural metal.

He said other types of metallic foils containing vanadium, chromium, manganese, nickel, cobalt, and iron have been successfully fabricated into laminates using the same stacked foil technique. “We’ve only begun to explore the possible combinations and potential uses of these promising new materials,” said Vecchio.

He described in his paper the production of cavities within his laminate layers, which were made by cutting out parts of the foil prior to heating. In one case, he filled cavities with steel beads, which were free to bounce within their confines and act as highly efficient vibration dampeners. “This vibration-dampening characteristic could be extremely valuable in jet engines and other high-performance applications prone to noisy vibration,” said Vecchio.

It’s also possible to include electrical pathways within the laminates by embedding metal or ceramic wires or fibers during fabrication, and those components could both strengthen the material and act as built-in sensors. In addition, Vecchio said the laminates could be further enhanced with the addition of materials that generate an electric charge when mechanically deformed. Conversely, these so-called piezoelectric materials also deform when an electric field is applied to them.

| newswise
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>