Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher describes new type of strong, lightweight metallic material

08.03.2005


A new type of laminate performed spectacularly in depth-of-penetration ballistics tests, but its greatest potential may derive from its ability to be tailored to meet specific engineering requirements



An engineering professor at the University of California, San Diego has described in the March issue of JOM (the Journal of the Minerals, Metals and Materials Society) the unique properties of a new type of metallic laminate that can serve as armor and as a replacement for beryllium, a strong but toxic metal commonly used in demanding aerospace applications.

"The new material we developed is environmentally safe, and while its stiffness equals that of steel, it’s only half as dense," said Kenneth S. Vecchio, author of the paper and a professor of mechanical and aerospace engineering in UCSD’s Jacobs School of Engineering. "It performs spectacularly in our depth-of-penetration ballistics tests, but we think its greatest potential may derive from its unique ability to have its structure and properties tailored to meet a wide variety of application-specific engineering requirements."


The new material is made primarily of two lightweight metals. Vecchio alternated layers of aluminum and titanium alloy foils, and compressed and heated them in an inexpensive energy-conserving process. The resulting reaction generated a laminate with two layers: a hard ceramic-like "intermetallic" layer of titanium aluminide, and a pliable layer of residual titanium alloy. The layers can be stacked like 1-millimeter-thick pages of a book, and even contoured into desired shapes prior to heating.

The laminate architecture was chosen by Vecchio to mimic the internal structure of the tough shell of the red abalone. This science-mimicking-biology approach is one of an increasing number of biomimetic research efforts at the Jacobs School of Engineering. Faculty members are studying structural and functional designs of everything from mollusk shells and bird bills to sea urchin spines and other biocomposites in the development of new smart materials and devices.

The red abalone, a seaweed-eating snail prized as a source of mother-of-pearl jewelry, is found off the coast of California. The mollusk makes its dome-shaped home by slowly adding layers of brittle calcium carbonate, each about one-thousandth the thickness of a strand of human hair, between even thinner layers of a stretchy protein adhesive.

"The intermetallic phase of titanium aluminide is the complement of the mollusk’s hard calcium carbonate phase, and the titanium alloy layer mimics the abalone shell’s compliant protein layers," said Vecchio.

In order to test the bullet-stopping capability of his new material, Vecchio fired a heavy tungsten alloy rod into a three-quarters-inch (2 centimeters) thick sample at a velocity of about 2,000 mph (900 meters per second). The rod penetrated only half the thickness of the test sample. Vecchio said the laminate performs surprisingly well as armor and has potential as a structural metal.

He said other types of metallic foils containing vanadium, chromium, manganese, nickel, cobalt, and iron have been successfully fabricated into laminates using the same stacked foil technique. "We’ve only begun to explore the possible combinations and potential uses of these promising new materials," said Vecchio.

He described in his paper the production of cavities within his laminate layers, which were made by cutting out parts of the foil prior to heating. In one case, he filled cavities with steel beads, which were free to bounce within their confines and act as highly efficient vibration dampeners. "This vibration-dampening characteristic could be extremely valuable in jet engines and other high-performance applications prone to noisy vibration," said Vecchio.

It’s also possible to include electrical pathways within the laminates by embedding metal or ceramic wires or fibers during fabrication, and those components could both strengthen the material and act as built-in sensors. In addition, Vecchio said the laminates could be further enhanced with the addition of materials that generate an electric charge when mechanically deformed. Conversely, these so-called piezoelectric materials also deform when an electric field is applied to them.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>