Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher describes new type of strong, lightweight metallic material

08.03.2005


A new type of laminate performed spectacularly in depth-of-penetration ballistics tests, but its greatest potential may derive from its ability to be tailored to meet specific engineering requirements



An engineering professor at the University of California, San Diego has described in the March issue of JOM (the Journal of the Minerals, Metals and Materials Society) the unique properties of a new type of metallic laminate that can serve as armor and as a replacement for beryllium, a strong but toxic metal commonly used in demanding aerospace applications.

"The new material we developed is environmentally safe, and while its stiffness equals that of steel, it’s only half as dense," said Kenneth S. Vecchio, author of the paper and a professor of mechanical and aerospace engineering in UCSD’s Jacobs School of Engineering. "It performs spectacularly in our depth-of-penetration ballistics tests, but we think its greatest potential may derive from its unique ability to have its structure and properties tailored to meet a wide variety of application-specific engineering requirements."


The new material is made primarily of two lightweight metals. Vecchio alternated layers of aluminum and titanium alloy foils, and compressed and heated them in an inexpensive energy-conserving process. The resulting reaction generated a laminate with two layers: a hard ceramic-like "intermetallic" layer of titanium aluminide, and a pliable layer of residual titanium alloy. The layers can be stacked like 1-millimeter-thick pages of a book, and even contoured into desired shapes prior to heating.

The laminate architecture was chosen by Vecchio to mimic the internal structure of the tough shell of the red abalone. This science-mimicking-biology approach is one of an increasing number of biomimetic research efforts at the Jacobs School of Engineering. Faculty members are studying structural and functional designs of everything from mollusk shells and bird bills to sea urchin spines and other biocomposites in the development of new smart materials and devices.

The red abalone, a seaweed-eating snail prized as a source of mother-of-pearl jewelry, is found off the coast of California. The mollusk makes its dome-shaped home by slowly adding layers of brittle calcium carbonate, each about one-thousandth the thickness of a strand of human hair, between even thinner layers of a stretchy protein adhesive.

"The intermetallic phase of titanium aluminide is the complement of the mollusk’s hard calcium carbonate phase, and the titanium alloy layer mimics the abalone shell’s compliant protein layers," said Vecchio.

In order to test the bullet-stopping capability of his new material, Vecchio fired a heavy tungsten alloy rod into a three-quarters-inch (2 centimeters) thick sample at a velocity of about 2,000 mph (900 meters per second). The rod penetrated only half the thickness of the test sample. Vecchio said the laminate performs surprisingly well as armor and has potential as a structural metal.

He said other types of metallic foils containing vanadium, chromium, manganese, nickel, cobalt, and iron have been successfully fabricated into laminates using the same stacked foil technique. "We’ve only begun to explore the possible combinations and potential uses of these promising new materials," said Vecchio.

He described in his paper the production of cavities within his laminate layers, which were made by cutting out parts of the foil prior to heating. In one case, he filled cavities with steel beads, which were free to bounce within their confines and act as highly efficient vibration dampeners. "This vibration-dampening characteristic could be extremely valuable in jet engines and other high-performance applications prone to noisy vibration," said Vecchio.

It’s also possible to include electrical pathways within the laminates by embedding metal or ceramic wires or fibers during fabrication, and those components could both strengthen the material and act as built-in sensors. In addition, Vecchio said the laminates could be further enhanced with the addition of materials that generate an electric charge when mechanically deformed. Conversely, these so-called piezoelectric materials also deform when an electric field is applied to them.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>