Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Fidelity Patterns Form Spontaneously When Solvent Evaporates

03.03.2005


Resembling neatly stacked rows of driftwood abandoned by receding tides, particles left by a confined, evaporating droplet can create beautiful and complex patterns. The natural, pattern-forming process could find use in fields such as nanotechnology and optoelectronics.

"A lot of work in nanotechnology has been directed toward the bottom-up imposition of patterns onto materials," said Steve Granick, a professor of materials science, chemistry and physics at the University of Illinois at Urbana-Champaign. "We found that beautiful patterns of high fidelity and regularity could form naturally and spontaneously, simply by allowing a drop to evaporate in a confined geometry."

Granick and former postdoctoral research associate Zhiqun Lin (now a professor of materials science at Iowa State University) describe their work in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. Funding was provided by the U.S. Department of Energy.



To produce the patterns, Granick and Lin began by gluing two small mica sheets to cylindrical mounts. With the cylinders at right angles, a droplet of volatile solution containing small polymer chains was inserted between the curved mica sheets. The sheets were then brought into contact and left undisturbed until evaporation was complete.

Because evaporation in this geometry is restricted to the edge of the droplet, the process results in hundreds of concentric rings with regular spacing, very much resembling a miniature archery target. Each ring - composed of polymer chains abandoned as the solvent receded - is several nanometers high and several microns wide.

The droplet evaporates in a jerky, stick-slip fashion, said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology.

"While the droplet is sticking to the surface, a ring of polymer is deposited," he said. "As evaporation continues, tension builds in the droplet. Eventually the droplet jerks to a new position, the tension is temporarily relieved, and another ring is deposited."

The simple evaporative process could be used to form patterns with many other materials, such as electrically conducting polymers, nanoparticles and proteins. Pattern formation could be controlled by altering the size of the material, changing the solvent, or modifying the surfaces.

"The pattern emerges spontaneously from the geometry in which we put the droplet," Granick said. "This means we could make other kinds of patterns by using different geometries or surfaces with tailored wettability."

James E. Kloeppel | News Bureau
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>