Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Fidelity Patterns Form Spontaneously When Solvent Evaporates

03.03.2005


Resembling neatly stacked rows of driftwood abandoned by receding tides, particles left by a confined, evaporating droplet can create beautiful and complex patterns. The natural, pattern-forming process could find use in fields such as nanotechnology and optoelectronics.

"A lot of work in nanotechnology has been directed toward the bottom-up imposition of patterns onto materials," said Steve Granick, a professor of materials science, chemistry and physics at the University of Illinois at Urbana-Champaign. "We found that beautiful patterns of high fidelity and regularity could form naturally and spontaneously, simply by allowing a drop to evaporate in a confined geometry."

Granick and former postdoctoral research associate Zhiqun Lin (now a professor of materials science at Iowa State University) describe their work in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. Funding was provided by the U.S. Department of Energy.



To produce the patterns, Granick and Lin began by gluing two small mica sheets to cylindrical mounts. With the cylinders at right angles, a droplet of volatile solution containing small polymer chains was inserted between the curved mica sheets. The sheets were then brought into contact and left undisturbed until evaporation was complete.

Because evaporation in this geometry is restricted to the edge of the droplet, the process results in hundreds of concentric rings with regular spacing, very much resembling a miniature archery target. Each ring - composed of polymer chains abandoned as the solvent receded - is several nanometers high and several microns wide.

The droplet evaporates in a jerky, stick-slip fashion, said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology.

"While the droplet is sticking to the surface, a ring of polymer is deposited," he said. "As evaporation continues, tension builds in the droplet. Eventually the droplet jerks to a new position, the tension is temporarily relieved, and another ring is deposited."

The simple evaporative process could be used to form patterns with many other materials, such as electrically conducting polymers, nanoparticles and proteins. Pattern formation could be controlled by altering the size of the material, changing the solvent, or modifying the surfaces.

"The pattern emerges spontaneously from the geometry in which we put the droplet," Granick said. "This means we could make other kinds of patterns by using different geometries or surfaces with tailored wettability."

James E. Kloeppel | News Bureau
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>