Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New math model of heart cell has novel calcium pathway

09.02.2005


Advance helps in arrythmia research



Scientists at Washington University in St. Louis have developed the first mathematical model of a canine cardiac cell that incorporates a vital calcium regulatory pathway that has implications in life-threatening cardiac arrhythmias, or irregular heartbeats.

Thomas J. Hund, Ph.D., post-doctoral researcher in Pathology ( in Dr. Jeffrey Saffitz laboratory) at the Washington University School of Medicine, and Yoram Rudy, The Fred Saigh Distinguished Professor of Engineering at Washington University, have incorporated the Calcium/Calmodulin-dependent Protein Kinase II (CaMKII) regulatory pathway into their model, improving the understanding of the relationship between calcium handling in cardiac cells and the cell’s electrical activity.


Normal contraction of the heart relies on normal generation of electrical signals, called action potentials, and their organized spread through cardiac tissue. The normal conduction of action potentials is reliant upon sodium channels. But slow conduction of action potentials that can lead to heart arrhythmias depends on calcium channels, which, in turn, are modulated by cell calcium. "CaMKII mediates an important regulatory pathway that influences calcium cycling in the cell and modulates many processes involving calcium, including activities of calcium channels" said Rudy. "Having this pathway modeled is a valuable research tool because there is a strong link between abnormalities of calcium handling and cardiac arrhythmias. In addition, being a first mathematical model of a regulatory pathway involved in cell electrophysiology, it can serve as a paradigm for modeling effects of other regulatory pathways on cell function."

Rudy and Hund published their findings in the Nov. 16, 2004 issue of Circulation, a journal of the American Heart Association. The work was funded by grants from the National Institutes of Health — National Heart, Lung, and Blood Institute, and a Whitaker Foundation Development Award. Throughout all living cells there is a broad array of charged atoms called ions interacting in a dynamic environment. Ion channels along cell membranes open and close to allow these interactions. In heart cells, for instance, many different kinds of ion channels interact to generate the action potentials that go through the heart and cause a synchronized, normal contraction.

In a normal heart, action potentials form very organized waves of activity and contraction. In arrhythmia, though, normal spread of action potentials can be disrupted, either by a focal activity of a confined group of heart cells or by electrical waves that break the heart’s synchrony in a number of different scenarios. The largest killer of Americans is heart disease, claiming one million Americans annually. Over 300,000 of these deaths are attributed to arrhythmia, seven million worldwide. Rudy has used a computational biology approach to study arrhythmias at various levels (ion channels, cell, multicellular tissue) of the cardiac system, and his laboratory also has developed detailed computer models of the workings of cardiac cells and their alteration by genetic mutations (Nature 1999;400:566).

Until recently, heart specialists have not had noninvasive tools like MRI and CT to better understand the heart’s electrical function. In work supported by a Merit Award from the NIH, Rudy has pioneered a novel, noninvasive imaging modality for cardiac electrophysiology and arrhythmias (Nature Medicine 2004;10:422). The new method, Electrocardiographic Imaging (ECGI), adds a much-needed clinical tool for the diagnosis and treatment of erratic heart rhythms; it also provides a noninvasive method for mechanistic studies of cardiac arrhythmias in humans. "ECGI has much potential," Rudy said. "One application could be as a screening tool to identify patients at risk of sudden death from arrhythmia. Another is diagnosis and guidance of therapeutic interventions. We have tested and validated the technology extensively in animal experiments and recently have started its application in humans."

Rudy’s technology, instead of using 12 electrodes like EKG, uses 250 electrodes in a vest a patient wears. This vest takes the equivalent of 250 EKGs simultaneously, getting electrical data from the entire torso. At the same time, anatomical data that include the torso geometry and the shape and location of the heart are obtained via a CT scan. "We obtain two pieces of information - the EKG field on the body surface and the CT information for the geometrical relationship of the heart and torso" said Rudy. "Over the years, we’ve developed the mathematics and computer algorithms to combine these two pieces of information and solve for the electrical activity of the heart."

Rudy joined Washington University last September, bringing with him from Case Western Reserve University in Cleveland a group of 22 people that includes two faculty members (Jianmin Cui, Ph.D., and Igor Efimov, Ph.D.), Ph.D. students, and laboratory personnel. He is a professor of biomedical engineering, cell biology & physiology, medicine, radiology, and pediatrics. He will establish an interdisciplinary center for the study of cardiac electrophysiology and arrhythmias, the Cardiac Bioelectricity and Arrhythmia Center (CBAC), with faculty in various departments in the School of Medicine and the School of Engineering and Applied Science.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>