Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Bumpy’ glass could lead to self-cleaning windows, slick micromachines

19.01.2005


Ohio State University engineers are designing super-slick, water-repellent surfaces that mimic the texture of lotus leaves.



The patent-pending technology could lead to self-cleaning glass, and could also reduce friction between the tiny moving parts inside microdevices.

Scientists have long known that the lotus, or water lily, makes a good model for a water-repellent surface, explained Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State. The leaf is waxy and covered with tiny bumps, so water rolls off.


In studying the lotus leaf, Bhushan realized that the same texture could be exploited to reduce friction between moving parts on machines. Small machines, such as those under development in the fields of micro- and nanotechnology, can’t be lubricated by normal means, and would especially benefit from the technology. “In general, what’s good for water-repellency is good for fighting friction,” Bhushan said.

But when it comes to designing high-tech surfaces -- for instance, a water-repellent car windshield or a low-friction joint on a micromachine -- just copying a lotus leaf isn’t enough. Bumpy, waxy surfaces can actually become sticky under some circumstances. “What people don’t know is what kind of surface is optimal,” he said. So he and his colleagues have built the first computer model that calculates the best bumpy surface for different materials and applications.

With the right kind of texture, manufacturers could make self-cleaning windows. Because the bumps would measure only a few nanometers (millionths of a meter) high, and would be made of a transparent material, the window would look like any other but still repel water and dirt. That would mean less window cleaning in homes and businesses.

So far, Bhushan’s team has focused on modeling bumps of different sizes and shapes. All the bumps included in the model aid water repellency by keeping water droplets from directly touching the surface.

Because the bumps are so much smaller than a droplet and so close together, they can’t puncture the droplet. In fact, if the droplet were perfectly balanced, it would just lie on the bumps the way a person can safely lie on a bed of nails. Bhushan’s model calculates how and where to place the bumps so that the droplet will contact the surface in just the right way to roll off.

In automobiles, water-repellent glass would improve safety by helping drivers see better, especially during inclement weather.

Right now, drivers can spray coatings on car windows to accomplish much the same thing, but those coatings wear off. Because the new technology builds water-repellency into the surface of the window, it would continue to work for the lifetime of the window.

Though drivers may rejoice at the idea of less window cleaning, Bhushan is most excited about what his technology could do for microelectronics. In 2001, his team developed the first direct method for measuring the friction between moving parts inside micromachines, and he has since been working on methods to reduce that friction.

Some of Bhushan’s industrial partners are building light-based electronics in which tiny mirrors move to reflect light in different directions. Others are working on very small sensors that detect and process chemical samples. Both kinds of devices are too small to use traditional lubricants on the moving parts.

One way to eliminate the need for lubricant is to build slick surfaces onto each individual part. Bhushan suspects his lotus-leaf surfaces might do the job. Manufacturers would just have to use his model to figure out what size and shape bumps are best for their application.

Bhushan has been supporting this work with his own internal laboratory funds, and he’ll need an industrial partner to carry the work further. He wants to fabricate some very high-quality textured materials for scientific study, so he’ll have to buy time in a clean room facility -- the kind computer chip manufacturers use.

Bharat Bhushan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>