Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Bumpy’ glass could lead to self-cleaning windows, slick micromachines

19.01.2005


Ohio State University engineers are designing super-slick, water-repellent surfaces that mimic the texture of lotus leaves.



The patent-pending technology could lead to self-cleaning glass, and could also reduce friction between the tiny moving parts inside microdevices.

Scientists have long known that the lotus, or water lily, makes a good model for a water-repellent surface, explained Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State. The leaf is waxy and covered with tiny bumps, so water rolls off.


In studying the lotus leaf, Bhushan realized that the same texture could be exploited to reduce friction between moving parts on machines. Small machines, such as those under development in the fields of micro- and nanotechnology, can’t be lubricated by normal means, and would especially benefit from the technology. “In general, what’s good for water-repellency is good for fighting friction,” Bhushan said.

But when it comes to designing high-tech surfaces -- for instance, a water-repellent car windshield or a low-friction joint on a micromachine -- just copying a lotus leaf isn’t enough. Bumpy, waxy surfaces can actually become sticky under some circumstances. “What people don’t know is what kind of surface is optimal,” he said. So he and his colleagues have built the first computer model that calculates the best bumpy surface for different materials and applications.

With the right kind of texture, manufacturers could make self-cleaning windows. Because the bumps would measure only a few nanometers (millionths of a meter) high, and would be made of a transparent material, the window would look like any other but still repel water and dirt. That would mean less window cleaning in homes and businesses.

So far, Bhushan’s team has focused on modeling bumps of different sizes and shapes. All the bumps included in the model aid water repellency by keeping water droplets from directly touching the surface.

Because the bumps are so much smaller than a droplet and so close together, they can’t puncture the droplet. In fact, if the droplet were perfectly balanced, it would just lie on the bumps the way a person can safely lie on a bed of nails. Bhushan’s model calculates how and where to place the bumps so that the droplet will contact the surface in just the right way to roll off.

In automobiles, water-repellent glass would improve safety by helping drivers see better, especially during inclement weather.

Right now, drivers can spray coatings on car windows to accomplish much the same thing, but those coatings wear off. Because the new technology builds water-repellency into the surface of the window, it would continue to work for the lifetime of the window.

Though drivers may rejoice at the idea of less window cleaning, Bhushan is most excited about what his technology could do for microelectronics. In 2001, his team developed the first direct method for measuring the friction between moving parts inside micromachines, and he has since been working on methods to reduce that friction.

Some of Bhushan’s industrial partners are building light-based electronics in which tiny mirrors move to reflect light in different directions. Others are working on very small sensors that detect and process chemical samples. Both kinds of devices are too small to use traditional lubricants on the moving parts.

One way to eliminate the need for lubricant is to build slick surfaces onto each individual part. Bhushan suspects his lotus-leaf surfaces might do the job. Manufacturers would just have to use his model to figure out what size and shape bumps are best for their application.

Bhushan has been supporting this work with his own internal laboratory funds, and he’ll need an industrial partner to carry the work further. He wants to fabricate some very high-quality textured materials for scientific study, so he’ll have to buy time in a clean room facility -- the kind computer chip manufacturers use.

Bharat Bhushan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Scientists predict a new superhard material with unique properties
18.06.2018 | Moscow Institute of Physics and Technology

nachricht A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive
15.06.2018 | University of California - San Diego

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>