Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering secrets of abalone body armor

17.01.2005


The mother-of-pearl growth surface of abalone shell is colored due to the way light refracts as it strikes tiny terraces of calcium carbonate.


Engineering researchers at the University of California, San Diego are using the shell of a seaweed-eating snail as a guide in the development of a new generation of bullet-stopping armor. The colorful oval shell of the red abalone is highly prized as a source of nacre, or mother-of-pearl, jewelry, but the UCSD researchers are most impressed by the shell’s ability to absorb heavy blows without breaking.

In a paper published in the Jan. 15 issue of Materials Science and Engineering A, Marc A. Meyers, a professor in UCSD’s Jacobs School of Engineering, and engineering graduate student Albert Lin explain in detail for the first time the steps taken by the abalone to produce a helmet-like home made with 95 percent calcium carbonate “tiles” and 5 percent protein adhesive. Teachers who write on blackboards know that calcium carbonate, or chalk, is weak and brittle, but Meyers and Lin have demonstrated that a highly ordered brick-like tiled structure created by the mollusk is the toughest arrangement of tiles theoretically possible.

The abalone shell investigation is one of a growing number of science-mimicking-nature, or biomimetic, projects at UCSD. For example, Meyers also is analyzing the strong, but extremely lightweight bill of the Toco Toucan, a Central and South American bird that squashes fruit and berries with its banana-shaped bill. “We are actually interested in basic research on new materials,” said Meyers. “We have turned to nature because millions of years of evolution and natural selection have given rise in many animals to some very sturdy materials with surprising mechanical properties.”



Other biomimetic projects at UCSD include development of a new artificial limb technology that relies on bars and wires, new drug synthesis techniques invented to duplicate those of microorganisms, and “epidemiology-based” techniques designed to detect and defend against viruses, worms and other plagues afflicting the Internet.

Abalone shell can’t stop an AK47 bullet. However, laminates of aluminum and other materials have been disappointing as armors. Meyers argues that a careful examination of the steps taken by abalone to make their shells may help materials scientists develop similarly lightweight and effective body armor for soldiers, police, and others.

“In our search for a new generation of armors, we have exhausted the conventional possibilities, so we’ve turned to biology-inspired, or biomimetic, structures,” said Meyers, a former scientist with the U.S. Army Research Office. “The laminate structure of abalone shell has stimulated our group to development a new synthetic material using this lowly mollusk as a guide.”

Biomimetic researchers interested in tough materials have discovered that mollusk shells, bird bills, deer antler, animal tendon, and other biocomposite materials have recurring building plans that yield a hierarchy of structures from the molecular level to the macro scale. For example, at the nanoscale, abalone shell is made of thousands of layers of calcium carbonate “tiles,” about 10 micrometers across and 0.5 micrometer thick, or about one-one hundredth the thickness of a strand of human hair. The irregular stacks of thin tiles refract light to yield the characteristic luster of mother of pearl.

Meyers said a key to the strength of the shell is a positively charged protein adhesive that binds to the negatively charged top and bottom surfaces of the calcium carbonate tiles. The glue is strong enough to hold layers of tiles firmly together, but weak enough to permit the layers to slip apart, absorbing the energy of a heavy blow in the process. Abalones quickly fill in fissures within their shells that form due to impacts, and they also deposit “growth bands” of organic material during seasonal lulls in shell growth. The growth bands further strengthen the shells.

The precise what that building blocks of shells are assembled determines their strength, and many of those details have been unknown. “Contrary to what others have thought, the tiles abutting each other in each layer are not glued on their sides, rather they are only glued on the top and bottom, which is why adjacent tiles can separate from one another and slide when a strong force is applied,” said Meyers. “The adhesive properties of the protein glue, together with the size and shape of the calcium carbonate tiles, explain how the shell interior gives a little without breaking. On the contrary, when a conventional laminate material breaks, the whole structure is weakened.”

Meyers and Lin closely measured shell growth by coaxing abalone grown in a laboratory aquarium at UCSD’s Scripps Institution of Oceanography. They gently pushed back a section of the mantle from the shell of individual abalones, glued 15 millimeter glass slides to the shell, and later withdrew the slides at various time intervals and examined the growth of “flat pearl” with a transmission electron microscope.

The flat pearl samples revealed that about every 10 micrometers, the abalone mantle initiated calcium carbonate precipitation. At those points, tiles began to form, growing 0.5 micrometer thick and slowly outward and assuming a hexagonal shape as individual tiles in each layer gradually grew to abut a neighboring tile. Photographed from above by a microscope, the growth surface of the shells has a Christmas-tree appearance because abalones add layers of tile faster than each layer is filled in.

Meyers and Lin plan to complete their analysis of the abalone shell and generate a mathematical description that can be used by others to construct body armor based on the abalone.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.jacobsschool.ucsd.edu/news_events/release.sfe?id=327

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>