Perfect packaging

Corrugated cardboard is an excellent packaging material that is widely used for transporting, storing and protecting goods. Through the new process developed by EUREKA project E! 1929 FACTORY FOLDHEX, corrugated cardboard can be transformed into a new honeycomb core that offers reduced weight, uses less raw material and achieves better crash absorption and higher compression resistance than double flute corrugated cardboard.

Honeycomb cores are already used in a variety of applications, including the aerospace and automotive industries, because of their outstanding performance in providing structural support and reducing weight. They are also recyclable and can even be produced from recycled paper. “However, current paper honeycomb production involves many distinct steps, making it too slow and too costly to target the corrugated cardboard market,” explains Jochen Pflug from the Department of Metallurgy and Materials Engineering at the project’s lead partner, the Katholieke Universiteit Leuven (K.U.Leuven).

To overcome this weakness, the project partners created an innovative and cost-effective process to produce the packaging material from a single continuous sheet of corrugated cardboard.

The new folded honeycomb material, developed and patented by K.U.Leuven, is produced by successive in-line slitting, rotation and glueing steps, and can be produced at a rate of 100 metres per minute. This allows for a continuous high-speed, low-cost production process that can compete in the double flute corrugated cardboard market worth €4.5 billion a year in Europe alone.

In addition to the new packaging material, the project partners have sandwiched thin (5 -10 mm), cost-efficient paper honeycombs between natural fibre mat skins for use in structural applications such as in cars and furniture – wherever there is a need for cost and weight savings. “The honeycombs also have good impact properties and can be recycled,” adds Pflug.

Despite the proven production speeds of the new honeycomb material, the transformation process for the structural materials currently works off-line, and with a board width limited to 1200 mm. Although production is already economically viable, work is continuing to optimise production and maximise profitability.

A spin-off company is expected to market the technology and to produce the structural honeycomb products. “Being a EUREKA project helped bring together companies from many different industrial sectors to develop new materials with many different potential applications,” says Pflug.

EUREKA is…

A European Network for market-oriented R&D

– strengthening European competitiveness
– promoting innovation in market-oriented collaborative projects
– involving industry, research centres and universities across Europe

resulting in innovative products, processes and services.

Media Contact

Julie Sors EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors