Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spider silks, the ecological materials of tomorrow?

30.11.2004


Spider silks could become the intelligent materials of the future, according to a review article published this month in the journal Microbial Cell Factories. The characteristics of spider silk could have applications in areas ranging from medicine to ballistics.



The distinctive toughness of spider silk could allow manufacturers to improve wound-closure systems and plasters, and to produce artificial ligaments and tendons for durable surgical implants. The silk could also be woven into strong textiles to make parachutes, body armour, ropes and fishing nets. A whole range of ecological materials could emerge from the industrial production of spider silk.

Thomas Scheibel, from the Department of Chemistry of the Technische Universität in München explains that there are currently over 34,000 described species of spider, each with a specific tool-kit of silks with different mechanical properties serving specific purposes.


For example, major ampullate silk, a very tough silk with a tensile strength comparable to Kevlar, is used for the primary dragline or scaffolding of the spider’s web. Minor ampullate silk with its very low elasticity is used to reinforce the web, while the strong and stretchy flagelliform silk forms the capture spiral of the web.

Biotechnologists are currently analysing the properties of silk proteins and how they assemble into threads. Knowing exactly how silk fibers are formed and what mechanical properties result from different assembly processes could allow the manufacture of artificial spider silks with special characteristics such as great strength or biochemical activity.

“The future objective might not be to prepare identical copies of natural silk fibers, but rather to capture key structural and functional features in designs that could be useful for engineering applications” explains the author.

Spiders are territorial and cannibalistic and so impossible to farm. The only way to produce large quantities of silk is to engineer and insert silk genes into other cells or organisms. But this has been complicated by the nature of the genes, which include many repeated sequences and rely on a different codon reading system from ours. However, in recent studies parts of the genes were successfully inserted into the bacterium E. coli, mammal and insect cells, which in turn produced silk proteins.

“Using ‘protein engineering’ based on knowledge achieved from investigations of the natural silks, artificial proteins can be designed that allow bacterial synthesis at high yields” writes Scheibel in the article*.

Engineering new proteins would also allow the design of completely new types of silk fiber, which could assemble with biochemically or biologically active groups into new types of mesh. These ‘intelligent’ materials would then be able to carry out enzymatic reactions, chemical catalysis or electronic signal propagation, for example.

Before this can be achieved, the spinning of proteins into fibers has to be resolved. So far there have been a few attempts at spinning silk on silicon micro-spinnerets. The outcomes have been promising but are far from matching naturally produced silks. For the moment the fibers produced are too wide, with diameters ranging from 10 to 60mm, compared with diameters of 2.5 to 4.0mm in natural fibers.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com
http://www.microbialcellfactories.com/content/3/1/14

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>