Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New project takes measure of plastic electronics

25.11.2004


In the future, the phrase smarty pants might be taken quite literally, referring to trousers embedded with electronic "intelligence" so that they change color, for example, in response to their surroundings.



The timing of this vernacular twist will depend on when plastic "chips" become practical--so cheap and reliable that electronic circuits can be printed not only on clothing but also on paper, billboards and nearly anything else. Unlike today’s largely silicon-based technologies, organic (carbon-based) materials are flexible, can be processed at low temperatures and lend themselves to large-area applications, such as wall-sized electronic murals.

Before the emerging field of organic electronics can deliver on its commercial promise, however, new measurements, standards and processing capabilities must be developed. Creating many of the requisite tools is the aim of a new five-year research effort at the National Institute of Standards and Technology (NIST).


"Organic electronics is at a stage akin to the very early days of the silicon semiconductor industry," explains NIST polymer scientist Eric Lin. "Lack of validated diagnostic probes and standardized test and measurement methods is an impediment to progress."

Unfortunately, the job of filling this void is especially challenging. The range of potential materials for organic electronics--from polymers to nanocomposites--is enormous. The number of synthesis and processing methods under consideration is also daunting. Examples include ink-jet printing, roll-to-roll printing and various ways to coax molecules to self-assemble into components.

Accurate, reliable measurements will help solve current manufacturing issues and speed widespread use of the new microchips. Ultimately, says Lin, NIST plans to develop an "integrated measurement platform." The envisioned tool will allow scientists and engineers to predict the performance of organic electronic devices based on composition, structure and materials properties.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>