Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multipurpose Nanocables Invented


Tiny nanocables, 1,000 times smaller than a human hair, could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips.

The technique for making the nanocables was invented by UC Davis chemical engineers led by Pieter Stroeve, professor of chemical engineering and materials science. They manufacture the cables in the nano-sized pores of a template membrane. The insides of the pores are coated with gold. Layers of other semiconductors, such as tellurium, cadmium sulfide or zinc sulfide, are electrochemically deposited in the gold tube until a solid cable forms, then the membrane is dissolved, leaving finished cables behind.

Stroeve envisions many uses for these nanocables. For example, the cables’ ability to conduct electricity changes when they are exposed to different chemicals or toxins. Earlier nano-devices could only detect whether a toxin was present, said Ruxandra Vidu, a postdoctoral scholar working with Stroeve. But nanocables will go further, measuring the quantity of toxins.

Stroeve’s team can also construct arrays of nanocables. "You put a copper tape on the tops of the nanocables before the template is dissolved," Stroeve said. "You’re left with nanocables sticking up at right angles from the tape."

These arrays have a very large surface area -- 1000 times greater than on a flat device of the same size. They could be used to efficiently capture sunlight in a tiny solar cell.

Nanocables could also be used to make computer chips more powerful by packing transistors closer together. Computers now contain silicon chips with metal transistors affixed to the surface. "With our new technique, we could embed transistors into the silicon chips to begin with," Stroeve said.

The work is published online in the Journal of the American Chemical Society.

Andy Fell | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>