Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Brick wall’ helps explain how corrosion spreads through alloy

16.11.2004


Ohio State University researchers are finding new insights into how microscopic corrosion attacks an aluminum alloy commonly used in aircraft.



They’ve developed a statistical model of the deterioration and simulated it on computer, using what may seem like an unlikely analogy: a cracking brick wall. What they’ve found could one day help scientists better understand this kind of corrosion, and also explain corrosion in other types of alloys. Although the alloy, called 2024-T3, is strong and resistant to corrosion in general, it is vulnerable to intergranular corrosion -- when tiny pits on the surface grow into crack-like fissures that snake down into a part, weakening the structure, explained Gerald Frankel, professor of materials science and engineering at Ohio State.

Frankel had long experimented with 2024-T3 in the lab, and he suspected that a good way to model this corrosion on computer might be to use the analogy of a brick wall -- with the fissures between the grains simulated as cracks spreading through the mortar between bricks. But modeling the complex microstructure of an aluminum alloy is very difficult. He approached Doug Wolfe, professor and chair of statistics at Ohio State, and together with their students, they developed a statistical model that depends on the probabilities of a fissure turning various different ways within the alloy.


In the December issue of the Journal of Statistical Planning and Inference, the researchers report that their brick wall model simulated intergranular corrosion in the alloy with near-perfect accuracy. The fissures seem to follow a random path between grains of the alloy, Frankel said. Metal alloys are made up of many individual grains, which are regions where the atoms are aligned in a particular direction. Large grains, like the ones on the surface of a new galvanized garbage can, are visible to the naked eye, Frankel said. In the high-strength aluminum alloys used in airplanes, grains are microscopic.

Corrosion often follows the region between the grains, called grain boundaries, which are more susceptible to attack. Sometimes a fissure will turn back on itself and re-emerge harmlessly at the surface, and other times it will progress through a part completely. When the part is on an aircraft skin, it has to be replaced quickly, and at great cost. The United States Air Force spends almost $1 billion each year fighting corrosion, Frankel pointed out.

Wolfe and doctoral student Shiling Ruan simulated a situation in which many fissures started at the top surface of an alloy sheet. They permitted the fissures to turn in all directions -- up, down, left, and right -- until one fissure completely penetrated the sheet and emerged on the other side. Based on thousands of simulations, they estimated the ratio of the length of the path followed by this first key fissure to the width of the sheet.

Their findings mirrored Frankel’s experiments in the lab, where he and doctoral student Weilong Zhang had measured the time for intergranular corrosion fissures to propagate through sheets of varying width. They calculated a ratio of fissure length to sheet width of 4.29 -- meaning that for a given sheet width, the average length of the first fissure to zigzag through it would be 4.29 times this width. In their simulations, Wolfe and Ruan obtained ratios as close as 4.25.

It is important to understand how such fissures propagate, Frankel said. Stresses on an aircraft can cause fissures to turn into large cracks that could lead to disaster if they are not repaired in time. So knowing how fissure propagation depends on the material microstructure could one day allow a prediction of when preventive maintenance is needed.

To Wolfe’s surprise, the factor that affected path length the most was not the direction a particular fissure would turn, but rather what happened when the fissure came to an intersection between paths -- a point in the alloy where three grain edges met. There a fissure could turn, or continue to follow a straight path and effectively “skip” the intersection. “At first, we conjectured that the most important factor was the probability that a fissure would turn downward, so that it was headed toward the back of the sheet. We didn’t expect that skipping was the real culprit in extending fissure lengths,” Wolfe said. Fissures with few skips found short paths through the sheet. Fissures with many skips were more likely to get caught up snaking sideways between the grains, and less likely to ever make it through.

In the future, engineers could potentially design a material’s microstructure to increase the probability of skips, if they could determine what exactly caused a skip. Frankel suspects that changes in the chemistry between grains or the angles of atoms in the grains may play an important role. But he also said this work is just beginning, and any such application is a long way off. “The problem is, we don’t know how these probabilities change form plate to plate or alloy to alloy,” he said.

Future work would have to assess how fissures travel through other alloys. And since the brick wall model is currently only two-dimensional, the researchers would have to expand it to three dimensions for more realistic results.

This work was funded by the National Science Foundation and the United States Air Force through a grant from S&K Technologies.

Gerald Frankel | EurekAlert!
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>