Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packaging film as a sterile zone

25.10.2004


No one wants food that has gone mouldy – least of all when they have only just purchased the product. But consumers are not exactly wild about food preservatives either. Packaging researchers are now introducing coated films to fight the battle of the bacteria.

At first glance, food packaging and an operating theater don’t have much in common. But when you look at the elaborate procedures that are used in sterilising packaging materials, the operating theatre analogy is not so far-fetched after all. Bacteria settle themselves at the exact spot where the foodstuff touches the packaging, and multiply rapidly from there. To put paid to the unwanted settlers, film-packaged foodstuffs often contain added food preservatives such as benzoic or sorbic acid. However, discerning consumers prefer to have as few additives as possible in their food.

This is why scientists at the Fraunhofer Institute for Process Engineering and Packaging IVV, working in the Alliance for Polymer Surfaces POLO, have opted for a different way of scaring off the moulds and microbes. Instead of adding preservatives to the food, they coat the packaging film with them. “This places the substances directly at the surface of the foodstuff, which is where they need to act,” explains group leader Dieter Sandmeier. “In that way we can cut food preservatives to a minimum.” The coating layer is applied using special techniques and materials based on substances such as Ormocers®.



These plastics contain elements of inorganic glass and organic polymers. “We have managed to develop films that can protect solid products from attack by all kinds of bacteria,” Sandmeier is pleased to report.

Films like this are not good enough when it comes to protecting liquid foods like milk, however. Because in this case the food preservatives introduced do not remain on the surface as they would on cheese or sausage. They spread through the entire product and are heavily diluted. Packaging materials for liquids are therefore sterilised with hydrogen peroxide, for example, before being brought into contact with foodstuffs.

But this complex procedure is performed at temperatures in excess of 70 °C, which is too high for certain plastics such as PET. The IVV researchers have now taken a leaf out of the medical technicians’ book. They sterilise medical instruments with plasma, an ionized gas. There is just one drawback: the treatment takes at least half an hour, or even up to one and a half hours – far too long for an industrial bottling process. The scientists have now optimized the process so that it only takes one to five seconds.

In this way they have no problem complying with environmental protection regulations, and energy consumption can be reduced by a factor of up to 1,000. The research scientists are presenting this and related topics at the “K” fair in Düsseldorf on October 20 to 27.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>