Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Packaging film as a sterile zone


No one wants food that has gone mouldy – least of all when they have only just purchased the product. But consumers are not exactly wild about food preservatives either. Packaging researchers are now introducing coated films to fight the battle of the bacteria.

At first glance, food packaging and an operating theater don’t have much in common. But when you look at the elaborate procedures that are used in sterilising packaging materials, the operating theatre analogy is not so far-fetched after all. Bacteria settle themselves at the exact spot where the foodstuff touches the packaging, and multiply rapidly from there. To put paid to the unwanted settlers, film-packaged foodstuffs often contain added food preservatives such as benzoic or sorbic acid. However, discerning consumers prefer to have as few additives as possible in their food.

This is why scientists at the Fraunhofer Institute for Process Engineering and Packaging IVV, working in the Alliance for Polymer Surfaces POLO, have opted for a different way of scaring off the moulds and microbes. Instead of adding preservatives to the food, they coat the packaging film with them. “This places the substances directly at the surface of the foodstuff, which is where they need to act,” explains group leader Dieter Sandmeier. “In that way we can cut food preservatives to a minimum.” The coating layer is applied using special techniques and materials based on substances such as Ormocers®.

These plastics contain elements of inorganic glass and organic polymers. “We have managed to develop films that can protect solid products from attack by all kinds of bacteria,” Sandmeier is pleased to report.

Films like this are not good enough when it comes to protecting liquid foods like milk, however. Because in this case the food preservatives introduced do not remain on the surface as they would on cheese or sausage. They spread through the entire product and are heavily diluted. Packaging materials for liquids are therefore sterilised with hydrogen peroxide, for example, before being brought into contact with foodstuffs.

But this complex procedure is performed at temperatures in excess of 70 °C, which is too high for certain plastics such as PET. The IVV researchers have now taken a leaf out of the medical technicians’ book. They sterilise medical instruments with plasma, an ionized gas. There is just one drawback: the treatment takes at least half an hour, or even up to one and a half hours – far too long for an industrial bottling process. The scientists have now optimized the process so that it only takes one to five seconds.

In this way they have no problem complying with environmental protection regulations, and energy consumption can be reduced by a factor of up to 1,000. The research scientists are presenting this and related topics at the “K” fair in Düsseldorf on October 20 to 27.

Johannes Ehrlenspiel | alfa
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>