Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT’s novel fabrics see the light

15.10.2004


In work that could lead to applications including multifunctional textile fabrics and all-optical computer interfaces, MIT researchers report the creation of flexible fibers and fabrics that can not only sense light, but also analyze its colors.

"These novel fiber structures offer a unique possibility for constructing an optoelectronic functional fabric because the fibers are both flexible and mechanically tough, and can thus be woven," write the researchers in the October 14 issue of Nature. "Interesting device applications follow not only from the ability to engineer the single-fiber properties, but also from the specifics of fiber arrangements into larger assemblies."

The team’s leader, Yoel Fink, notes that "the technique we developed allows us to bring together two disparate technologies: those involved in creating optical fibers and those for electronic components." The work "challenges the traditional barrier between semiconductor devices and fiber-optic processing," said Fink, the Thomas B. King Assistant Professor of Materials Science and Engineering.



The result? The team can create devices which marry the ease of fabrication, length and flexibility associated with optical fibers with the many integrated functions associated with semiconductor devices. "Being able, for the first time, to precisely control the behavior of electrons, photons and their interactions within a fiber framework leads naturally to the exciting possibility of eventually creating intrinsically smart fabrics," said co-author John D. Joannopoulos, the Francis Wright Davis Professor of Physics.

Two prototypes

Already the team has created two different prototype fibers with the new technology. The first is a fiber that simultaneously conducts two types of information carriers: electrons and photons. The photons are guided in a hollow core lined by a highly confining reflective surface dubbed "the perfect mirror" when Fink invented it in 1998 as an MIT graduate student. The electrons are conducted through metal microwires that surround the fiber core. The photons and electrons do not interact as they are confined to different spatial locations within the fiber.

A second fiber utilizes an interaction between photons and electrons. This fiber photodetector was designed to be sensitive to external illumination at specific wavelengths of light. It is made of a cylindrical semiconductor core contacted by four metal microwires that are surrounded by an optical cavity structure. The electrical conductance of this fiber was found to increase dramatically upon illumination with light at the wavelength it was designed to detect.

Some of the most exciting and novel potential applications stem from assembling the fibers into woven structures. As the authors point out, "…it is the assembly of such fibers into 2-D grids or webs that enables the identification of the location of an illumination point on a surface," and does so with a very small number of fibers.

Embedding these grids in computer screens or onto projection boards could therefore provide a new type of interface, said Fink. "Instead of having a mechanical mouse, you could just use a light beam, like a laser pointer, to communicate with the computer because the screen would know where it was being hit."

The researchers included as supplementary material to their publication (archived on Nature’s website) a short video demonstrating a novel optical system developed using the fiber photodetector. Go to http://www.nature.com/nature/journal/v431/n7010/suppinfo/nature02937.html to view the video.

The paper’s lead author is Mehmet Bayindir, a postdoctoral associate in the Research Laboratory for Electronics (RLE). Additional authors are RLE Postdoctoral Associate Ayman Abouraddy, Graduate Students Fabien Sorin and Jeff Viens of the Department of Materials Science and Engineering, and Shandon Hart (MIT Ph.D. 2004, now at 3M). All of the authors are also affiliated with the Center for Materials Science and Engineering and RLE.

How they did it

"Just as in the movie ’Honey, I Shrunk the Kids,’ wouldn’t it be wonderful if you could fabricate something on the macroscale, then shrink it to a microscopic size?" said Fink. "That’s what we did. But the magic shrink-down apparatus we used is not a ’shrinking beam’ from science fiction ... it’s a furnace."

The team first created a macroscopic cylinder, or preform, some 20 centimeters long by 35 millimeters in diameter containing a low-melting-temperature conductor, an amorphous semiconductor, and a high-glass transition thermoplastic insulator. The preform shares the final geometry of the fiber, but lacks functionality due to the absence of intimate contact between its constituents and proper element dimensions.

The preform is subsequently fed into a tube furnace where it is heated and drawn into a fiber that does exhibit both electrical and optical functionalities. "These follow from the excellent contact, appropriate element dimensions, and the fact that the resulting fiber retains the same structure as the macroscopic preform cylinder throughout the drawing process," said Bayindir, who designed and synthesized the semiconducting glasses, assembled the preforms and drew the fibers presented in the paper.

The authors conclude that their new ability to interface materials with widely disparate electrical and optical properties in a fiber, achieve submicrometer features, and realize arbitrary geometries over extended fiber lengths presents "the opportunity to deliver novel semiconductor device functionalities at fiber-optic length scales and cost."

This work is funded by the Defense Advanced Research Projects Agency, the Army Research Office, the Office of Naval Research, the Air Force Office of Scientific Research, the Department of Energy, MIT’s Institute for Soldier Nanotechnology, and the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation.

The authors would like to express their deep gratitude to Esra Bayindir, C. Bruce, A. McGurl, J. Connolly, B. Smith, M. Young and the entire staff of MIT’s Research Laboratory for Electronics and Center for Materials Science and Engineering (part of the NSF’s MRSEC program).

Yoel Fink | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>