Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass sensors measure weathering effects

04.10.2004


The corrosiveness of a specific atmosphere can be established in a few weeks by thin slices of special glass. The sensors are capable of monitoring the outdoor environment as well as indoors, for instance in sensitive production processes such as chip fabrication.



Where does a Landrover develop rust faster: in the dusty Sahara or parked in front of an English stately home? The answer’s obvious: In rainy Britain of course. But the rate at which corrosion sets in is not only dependent on precipitation. It also involves other factors like humidity and temperature, and the concentration of air pollutants such as nitrogen oxides and sulfur compounds.

Traditionally, each of these parameters is measured separately, making it difficult to predict their corrosive effect, because this depends on the interaction of all variable factors. Scientists at the Fraunhofer Institute for Silicate Research ISC have developed a glass sensor that allows the complex effect to be calculated even before the vehicle starts to rust. The manufacturing process for the glass sensor has been validated according to German VDI guideline 3955/2.


The glass plates have a polished surface that is highly sensitive to corrosion. “This allows us to detect changes long before the exposed materials or objects show any signs of damage,” explains Hannelore Römich, head of the department for conservation of historical artifacts. The researchers place the glass sensors in small holders at the site in question. A few weeks later, they collect the plates and analyze them using infrared spectroscopy. This allows them to quantify any changes in the composition of the glass. From these data, they can extrapolate the probable damage to other inorganic materials such as stone or metal, and identify the specific pollutants responsible for the corrosion. By examining the plates under a microscope, the scientists can also tell whether microorganisms play a role in the weathering process.

“The sensor has already been employed to good effect on historic monuments, stained-glass windows and in museums,” reports Hannelore Römich. “In each case, the thin glass plates were extremely useful in helping to improve the conditions needed to preserve the works of art.” The researchers recently took measurements at the DaimlerChrysler site in Sindelfingen near Stuttgart, to determine whether the air in the vicinity of the carmaker’s world-largest production plant is too corrosive. A false assumption, as the sensors proved.

The inventors of this simple test also see other potential applications, for instance monitoring the air in chip-fabrication facilities, where a corrosive atmosphere would damage the delicate components. To make this possible, the researchers have improved the sensitivity of the sensor. Special coatings make it three to ten times more sensitive and hence faster.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>