Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glass sensors measure weathering effects


The corrosiveness of a specific atmosphere can be established in a few weeks by thin slices of special glass. The sensors are capable of monitoring the outdoor environment as well as indoors, for instance in sensitive production processes such as chip fabrication.

Where does a Landrover develop rust faster: in the dusty Sahara or parked in front of an English stately home? The answer’s obvious: In rainy Britain of course. But the rate at which corrosion sets in is not only dependent on precipitation. It also involves other factors like humidity and temperature, and the concentration of air pollutants such as nitrogen oxides and sulfur compounds.

Traditionally, each of these parameters is measured separately, making it difficult to predict their corrosive effect, because this depends on the interaction of all variable factors. Scientists at the Fraunhofer Institute for Silicate Research ISC have developed a glass sensor that allows the complex effect to be calculated even before the vehicle starts to rust. The manufacturing process for the glass sensor has been validated according to German VDI guideline 3955/2.

The glass plates have a polished surface that is highly sensitive to corrosion. “This allows us to detect changes long before the exposed materials or objects show any signs of damage,” explains Hannelore Römich, head of the department for conservation of historical artifacts. The researchers place the glass sensors in small holders at the site in question. A few weeks later, they collect the plates and analyze them using infrared spectroscopy. This allows them to quantify any changes in the composition of the glass. From these data, they can extrapolate the probable damage to other inorganic materials such as stone or metal, and identify the specific pollutants responsible for the corrosion. By examining the plates under a microscope, the scientists can also tell whether microorganisms play a role in the weathering process.

“The sensor has already been employed to good effect on historic monuments, stained-glass windows and in museums,” reports Hannelore Römich. “In each case, the thin glass plates were extremely useful in helping to improve the conditions needed to preserve the works of art.” The researchers recently took measurements at the DaimlerChrysler site in Sindelfingen near Stuttgart, to determine whether the air in the vicinity of the carmaker’s world-largest production plant is too corrosive. A false assumption, as the sensors proved.

The inventors of this simple test also see other potential applications, for instance monitoring the air in chip-fabrication facilities, where a corrosive atmosphere would damage the delicate components. To make this possible, the researchers have improved the sensitivity of the sensor. Special coatings make it three to ten times more sensitive and hence faster.

Johannes Ehrlenspiel | alfa
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>