Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laboratory advances the art and science of aerogels


University of California scientists working at Los Alamos National Laboratory have recently demonstrated a novel method for chemically modifying and enhancing silica-based aerogels without sacrificing the aerogels unique properties. Aerogels are low-density, transparent materials used in a wide range of applications, including thermal insulation, porous separation media, inertial confinement fusion experiments and cometary dust capture agents.

Made of silica, one of the Earth’s most abundant materials, aerogels are as much as 99 percent air, giving them not only the highest thermal insulation value and highest surface area, but also the lowest acoustic conductivity and density of all known solid materials. The aerogels’ extraordinary thermal insulation ability makes them capable of withstanding temperatures in excess of a thousand of degrees Fahrenheit. Because they are composed mostly of air, there is little solid content available for maintaining the structural integrity of the aerogel, making them brittle.

In research reported today at the 228th national meeting of the American Chemical Society, Laboratory scientist Kimberly DeFriend describes a process for modifying silica aerogels with silicon and transition metal compounds using chemical vapor techniques to create a silicon multilayer or a mixed-metal oxide that enhance the current physical properties of aerogels for more demanding applications. With the addition of a silicon monolayer, an aerogel’s strength can be increased four-fold.

Aerogels are synthesized at Los Alamos using sol-gel processing and super-critically dried with either carbon dioxide or a solvent. This sol-gel processing method allows the gel to be formed in the shape of its mold, making it possible to create a variety of shapes. The introduction of silicon multilayers or transition metal compounds allows the aerogels to retain their most valuable porosity and density characteristics while enhancing weaker characteristics like mechanical strength.

Los Alamos has recently begun to expand and advance its ability to synthesize and manufacture the aerogels. This improved capability will allow Laboratory scientists to not only more closely study and improve on the quality of the aerogels, but also help to better meet the Laboratory’s inertial confinement fusion and high-energy-density physics aerogel target needs.

In addition to DeFriend, the Los Alamos aerogel team includes Douglas Loy, Arthur Nobile, Jr. Kenneth Salazar, James Small, Jonathan Stoddard and Kennard Wilson, Jr., all with the Laboratory’s Materials Science and Technology Division.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>