Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PVC Additives Make Vinyl More Fire-retardant without Toxic Heavy Metals

25.08.2004


One of the most widely used plastics in the world — PVC — could be on the verge of becoming more fire retardant and environmentally friendly, thanks to the work of researchers at the College of William and Mary in Williamsburg, Va.

PVC is practically ubiquitous in our society, especially in many homes. Household products from water pipes to shower curtains and house siding to window shades and wall coverings are made from poly(vinyl chloride).

Polymer chemists developed additives to make PVC more resistant to fire shortly after its commercialization in the 1930s, but some of these additives contain heavy metals that can be toxic to humans and the environment, a topic of much discussion and debate among environmental groups and the industry for several years. Organic chemist William H. Starnes, Ph.D., of the College of William and Mary described new, more benign additives today at the 228th national meeting of the American Chemical Society, the world’s largest scientific society.



Starnes and fellow chemistry professor Robert D. Pike, Ph.D., have replaced heavy metals the industry currently uses, such as molybdenum, with copper, which is essentially non-toxic. The new additives appear to work in part like many traditional fire retardants: In the presence of heat, they create chemical crosslinks within the polymer to form an inert char on its surface that helps block flammable gases inside from escaping.

The Starnes-Pike additives appear to improve the way fire retardants make the char, however. Current technology uses electron-seeking compounds called Lewis acids, which in very intense temperatures can start attacking the crosslinks of char, defeating its own mechanism to reduce smoke and fire. The new additives rely instead on copper atoms to stitch together the crosslinks.

Test conducted within the PVC industry “suggest our additives are actually better,” says Starnes. “That’s why we’re so excited about them.”

The hurdle likely remaining is color. “Cuprous copper [Cu(1+)] tends to actually give us white, which is desirable,” he noted. “The problem, though, is that it oxidizes fairly easily to cupric copper [Cu(2+)], which carries an aqua color” that can tint the final product.

As always, the bottom line for industry is cost. The synthesis of the copper-based fire retardants and smoke suppressors is “quite easy,” says Starnes. “If we can solve the color problem, the economics would be favorable, at least in a preliminary way.”

These more benign additives would not be Starnes’s first. His group is also developing alternatives to make PVC less vulnerable to heat, and which are even closer to practical use in industry.

“PVC intrinsically is somewhat unstable. In the presence of heat, it will fairly easily lose hydrogen chloride and gradually turn yellow and, eventually, black,” he explained. “For at least 50 years chemists have tried to develop organic heat stabilizers to replace those containing heavy metals. And we’re now to the point where some companies are interested in licensing ours.”

Starnes himself came to academia from industry, first as head of plastic additives research for Esso (now ExxonMobil) and then as a plastics research supervisor with AT&T Bell Laboratories. He joined the William and Mary faculty in 1989. His work on PVC fire retardants and smoke suppressors is funded by the National Science Foundation.

| newswise
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>