Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PVC Additives Make Vinyl More Fire-retardant without Toxic Heavy Metals

25.08.2004


One of the most widely used plastics in the world — PVC — could be on the verge of becoming more fire retardant and environmentally friendly, thanks to the work of researchers at the College of William and Mary in Williamsburg, Va.

PVC is practically ubiquitous in our society, especially in many homes. Household products from water pipes to shower curtains and house siding to window shades and wall coverings are made from poly(vinyl chloride).

Polymer chemists developed additives to make PVC more resistant to fire shortly after its commercialization in the 1930s, but some of these additives contain heavy metals that can be toxic to humans and the environment, a topic of much discussion and debate among environmental groups and the industry for several years. Organic chemist William H. Starnes, Ph.D., of the College of William and Mary described new, more benign additives today at the 228th national meeting of the American Chemical Society, the world’s largest scientific society.



Starnes and fellow chemistry professor Robert D. Pike, Ph.D., have replaced heavy metals the industry currently uses, such as molybdenum, with copper, which is essentially non-toxic. The new additives appear to work in part like many traditional fire retardants: In the presence of heat, they create chemical crosslinks within the polymer to form an inert char on its surface that helps block flammable gases inside from escaping.

The Starnes-Pike additives appear to improve the way fire retardants make the char, however. Current technology uses electron-seeking compounds called Lewis acids, which in very intense temperatures can start attacking the crosslinks of char, defeating its own mechanism to reduce smoke and fire. The new additives rely instead on copper atoms to stitch together the crosslinks.

Test conducted within the PVC industry “suggest our additives are actually better,” says Starnes. “That’s why we’re so excited about them.”

The hurdle likely remaining is color. “Cuprous copper [Cu(1+)] tends to actually give us white, which is desirable,” he noted. “The problem, though, is that it oxidizes fairly easily to cupric copper [Cu(2+)], which carries an aqua color” that can tint the final product.

As always, the bottom line for industry is cost. The synthesis of the copper-based fire retardants and smoke suppressors is “quite easy,” says Starnes. “If we can solve the color problem, the economics would be favorable, at least in a preliminary way.”

These more benign additives would not be Starnes’s first. His group is also developing alternatives to make PVC less vulnerable to heat, and which are even closer to practical use in industry.

“PVC intrinsically is somewhat unstable. In the presence of heat, it will fairly easily lose hydrogen chloride and gradually turn yellow and, eventually, black,” he explained. “For at least 50 years chemists have tried to develop organic heat stabilizers to replace those containing heavy metals. And we’re now to the point where some companies are interested in licensing ours.”

Starnes himself came to academia from industry, first as head of plastic additives research for Esso (now ExxonMobil) and then as a plastics research supervisor with AT&T Bell Laboratories. He joined the William and Mary faculty in 1989. His work on PVC fire retardants and smoke suppressors is funded by the National Science Foundation.

| newswise
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>