Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PVC Additives Make Vinyl More Fire-retardant without Toxic Heavy Metals

25.08.2004


One of the most widely used plastics in the world — PVC — could be on the verge of becoming more fire retardant and environmentally friendly, thanks to the work of researchers at the College of William and Mary in Williamsburg, Va.

PVC is practically ubiquitous in our society, especially in many homes. Household products from water pipes to shower curtains and house siding to window shades and wall coverings are made from poly(vinyl chloride).

Polymer chemists developed additives to make PVC more resistant to fire shortly after its commercialization in the 1930s, but some of these additives contain heavy metals that can be toxic to humans and the environment, a topic of much discussion and debate among environmental groups and the industry for several years. Organic chemist William H. Starnes, Ph.D., of the College of William and Mary described new, more benign additives today at the 228th national meeting of the American Chemical Society, the world’s largest scientific society.



Starnes and fellow chemistry professor Robert D. Pike, Ph.D., have replaced heavy metals the industry currently uses, such as molybdenum, with copper, which is essentially non-toxic. The new additives appear to work in part like many traditional fire retardants: In the presence of heat, they create chemical crosslinks within the polymer to form an inert char on its surface that helps block flammable gases inside from escaping.

The Starnes-Pike additives appear to improve the way fire retardants make the char, however. Current technology uses electron-seeking compounds called Lewis acids, which in very intense temperatures can start attacking the crosslinks of char, defeating its own mechanism to reduce smoke and fire. The new additives rely instead on copper atoms to stitch together the crosslinks.

Test conducted within the PVC industry “suggest our additives are actually better,” says Starnes. “That’s why we’re so excited about them.”

The hurdle likely remaining is color. “Cuprous copper [Cu(1+)] tends to actually give us white, which is desirable,” he noted. “The problem, though, is that it oxidizes fairly easily to cupric copper [Cu(2+)], which carries an aqua color” that can tint the final product.

As always, the bottom line for industry is cost. The synthesis of the copper-based fire retardants and smoke suppressors is “quite easy,” says Starnes. “If we can solve the color problem, the economics would be favorable, at least in a preliminary way.”

These more benign additives would not be Starnes’s first. His group is also developing alternatives to make PVC less vulnerable to heat, and which are even closer to practical use in industry.

“PVC intrinsically is somewhat unstable. In the presence of heat, it will fairly easily lose hydrogen chloride and gradually turn yellow and, eventually, black,” he explained. “For at least 50 years chemists have tried to develop organic heat stabilizers to replace those containing heavy metals. And we’re now to the point where some companies are interested in licensing ours.”

Starnes himself came to academia from industry, first as head of plastic additives research for Esso (now ExxonMobil) and then as a plastics research supervisor with AT&T Bell Laboratories. He joined the William and Mary faculty in 1989. His work on PVC fire retardants and smoke suppressors is funded by the National Science Foundation.

| newswise
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>