Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PVC Additives Make Vinyl More Fire-retardant without Toxic Heavy Metals

25.08.2004


One of the most widely used plastics in the world — PVC — could be on the verge of becoming more fire retardant and environmentally friendly, thanks to the work of researchers at the College of William and Mary in Williamsburg, Va.

PVC is practically ubiquitous in our society, especially in many homes. Household products from water pipes to shower curtains and house siding to window shades and wall coverings are made from poly(vinyl chloride).

Polymer chemists developed additives to make PVC more resistant to fire shortly after its commercialization in the 1930s, but some of these additives contain heavy metals that can be toxic to humans and the environment, a topic of much discussion and debate among environmental groups and the industry for several years. Organic chemist William H. Starnes, Ph.D., of the College of William and Mary described new, more benign additives today at the 228th national meeting of the American Chemical Society, the world’s largest scientific society.



Starnes and fellow chemistry professor Robert D. Pike, Ph.D., have replaced heavy metals the industry currently uses, such as molybdenum, with copper, which is essentially non-toxic. The new additives appear to work in part like many traditional fire retardants: In the presence of heat, they create chemical crosslinks within the polymer to form an inert char on its surface that helps block flammable gases inside from escaping.

The Starnes-Pike additives appear to improve the way fire retardants make the char, however. Current technology uses electron-seeking compounds called Lewis acids, which in very intense temperatures can start attacking the crosslinks of char, defeating its own mechanism to reduce smoke and fire. The new additives rely instead on copper atoms to stitch together the crosslinks.

Test conducted within the PVC industry “suggest our additives are actually better,” says Starnes. “That’s why we’re so excited about them.”

The hurdle likely remaining is color. “Cuprous copper [Cu(1+)] tends to actually give us white, which is desirable,” he noted. “The problem, though, is that it oxidizes fairly easily to cupric copper [Cu(2+)], which carries an aqua color” that can tint the final product.

As always, the bottom line for industry is cost. The synthesis of the copper-based fire retardants and smoke suppressors is “quite easy,” says Starnes. “If we can solve the color problem, the economics would be favorable, at least in a preliminary way.”

These more benign additives would not be Starnes’s first. His group is also developing alternatives to make PVC less vulnerable to heat, and which are even closer to practical use in industry.

“PVC intrinsically is somewhat unstable. In the presence of heat, it will fairly easily lose hydrogen chloride and gradually turn yellow and, eventually, black,” he explained. “For at least 50 years chemists have tried to develop organic heat stabilizers to replace those containing heavy metals. And we’re now to the point where some companies are interested in licensing ours.”

Starnes himself came to academia from industry, first as head of plastic additives research for Esso (now ExxonMobil) and then as a plastics research supervisor with AT&T Bell Laboratories. He joined the William and Mary faculty in 1989. His work on PVC fire retardants and smoke suppressors is funded by the National Science Foundation.

| newswise
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>