Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paint Absorbs Corrosion-causing Chemicals, Kitty-litter Style


Engineers at Ohio State University have incorporated clay and other chemicals into a paint that keeps metal from corroding -- and reveals when an airplane, boat, or bridge needs to be repainted.

Though the paint is still under development, early tests have shown that it prevents corrosion just as well as commercial paints that are less environmentally friendly.

The new paint is unique because its pigment contains tiny particles of clay that capture the chemicals that cause corrosion. It also releases just the right amount of a corrosion-fighting agent when needed, explained Rudolph Buchheit, professor of materials science and engineering. “It works kind of like high-tech kitty litter,” he said.

With further development, the pigment could enable maintenance crews to inspect surfaces using a common X-ray technique to determine when they need to be repainted. Buchheit and doctoral student Santi Chrisanti described the project Monday, August 23, at the meeting of the American Chemical Society in Philadelphia.

The pigment contains cerium, one of several natural anti-corrosion minerals known as rare earth elements. Coatings inside self-cleaning ovens often contain cerium, but those coatings are passive -- they release cerium continually until the element is gone. Scientists have been working for years to create “smart pigments” that can do more.

“The challenge has been how to keep these rare earth elements stored in a paint and then release them on demand, just when conditions are right for corrosion,” Buchheit said.

Chloride is the chemical responsible for most metal corrosion. Water is another key ingredient, and water that contains salt, or sodium chloride, is particularly corrosive. When paint cracks or wears off, a chemical reaction with the chloride eats away the exposed metal -- a serious problem for critical structures on vehicles or bridges.

To fight corrosion, the new pigment absorbs chloride, and releases cerium or other corrosion inhibitors to form a protective film over cracks in the paint. In tests, the engineers coated pieces of metal with the new paint formulation, and scratched the surface to simulate severe paint wear. Then they subjected the metal to a constant saltwater fog in a laboratory corrosion chamber.

After 1,000 hours, the metal remained corrosion-free -- a performance comparable to commercial paints.

But those commercial paints prevent corrosion using chromate -- a toxic chemical that rose to public awareness with the release of the film Erin Brockovich. Chromate must be carefully disposed of, to keep it from entering the water supply.

And if cerium or other another corrosion inhibitor were to enter the water supply? Buchheit admits that is a question better left to toxicologists than materials scientists, but to his knowledge the chemicals he is studying do not appear to pose the same health hazards.

In another result of their laboratory tests, the engineers confirmed that a technique called X-ray diffraction can be used to measure how much cerium was released to fill the cracks, and how much was left in the paint -- an indicator of whether a piece of metal would need to be repainted.

With this technique, X-rays bounce off of the crystalline clay additives to form a pattern. Because the pattern is unique to every material, scientists can use X-ray diffraction to read a substance’s chemical fingerprint.

Buchheit pointed out that the use of a different X-ray technique, X-ray radiography, is now routine for studying airplanes, bridges and boats: “We want to make our replacement technology as much like the incumbent technology as we can, so people can use the same expertise and equipment to get the job done. X-ray diffraction is not as common outside of the research laboratory as X-ray radiography, but it’s not unprecedented, either.”

He envisions that maintenance crews would set up an X-ray diffraction machine on a rack that rolled over an object, such as an airplane wing. The process could be automated.

The engineers continue to work on the pigment, which should work with just about any corrosion inhibitor, not just cerium. Other possibilities that Buchheit’s team are currently studying include molybdenum and vanadium. Buchheit emphasized, however, that the new pigment is far from a commercial product. “Real corrosion-resistant paints are highly engineered,” he said. “They’ve been given all kinds of additives to make them flow better or to give them a fine gloss -- things we haven’t yet worried about.”

The Air Force Office of Scientific Research funded this work.

| newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>