Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shock Tube Simulates Explosions to Test Homeland Defense Materials

20.08.2004


People are just as likely to be killed, or property damaged, by the shock wave from an exploding bomb as from flying debris or flames. The rush of gases emanating from a bomb can travel more than 10 times the speed of sound, destroying everything in its path.



Two University of Rhode Island engineers have constructed a "shock tube" to simulate this rush of gas so they can test the ability of various new composite materials to withstand these extreme forces.

"What we’re creating is a controlled explosive effect so we can test materials for their resistance to explosions," explained Carl-Ernst Rousseau, assistant professor of mechanical engineering. "When chemicals react and burst in a bomb, they create a pressure pulse in the air that expands. That’s what we’re creating in the shock tube."


Rousseau and Arun Shukla, professor and chairman of the URI Department of Mechanical Engineering, received grants from the U.S. Army ($150,000), the U.S. Office of Naval Research ($170,000), the URI Transportation Center ($80,000) and 3Tex Corp. ($86,000) to construct and test the 23-foot long, 6-inch diameter, aluminum tube.

With a thin barrier placed 6 feet from the near end of the tube, the URI scientists pump helium into the tube until the pressure builds so high that it bursts through the barrier. The gas then speeds down the remaining 17-foot length of the tube at speeds of up to Mach 6 (six times the speed of sound) and slams into a material placed at the opposite end. Sensors attached to the material being tested monitor the pressure and strain exerted on the material during impact.

"This device has a wide variety of homeland security applications because the government is very interested in protecting people and equipment from the impact of blasts," said Shukla.

The first material the researchers are testing is a composite called 3-Weave developed by North Carolina-based 3Tex, a company Shukla has worked with for many years on other research applications. While most fabric is woven in two directions, 3Tex weaves its glass fibers in three directions to provide added strength. When applied to a ceramic backing, it is used as a lightweight armor for protecting military vehicles.

Rousseau and Shukla are testing the lightweight material without the ceramic backing to assess its effectiveness for other uses, like the side panels of trucks to protect the cargo from a bomb. Truck panels made of 3-Weave might also protect those outside the truck from an accidental explosion inside a truck carrying chemicals, propane or other volatile materials.

Several other companies have asked the researchers to test composite materials they have developed as well.

Rousseau also plans to test cow bones to evaluate the dynamic property of bone under explosive impact. "We obviously can’t study how bombs impact human bodies, but the shock tube allows us to do the next best thing," he said.

The URI researchers will also test other materials that may be in the path of an explosion, like building materials, concrete and safety glass.

| newswise
Further information:
http://www.uri.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>