Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight Into Aluminium

12.07.2004


Aluminium is a metal widely used in industry; therefore the more that is known about it, the more effectively it can be used. Researchers at Risø National Laboratory in Denmark and the European Synchrotron Radiation Facility (ESRF) in France have filmed in 3D the changes in the bulk of deformed aluminium after annealing. Thanks to the uniqueness of the synchrotron light at the ESRF, this kind of experiment could take place for the first time ever. The results give a new insight into this metal and contradict classical assumptions. They are published today in the journal Science.



Take a can. The aluminium that you see has been processed before having the shape of a cylinder. In a first stage, the aluminium is deformed. The energy is concentrated in its bulk. Then it goes through a process of annealing to get the shape of the can. In the annealing process, grains grow in the bulk. Up to now, there was a general assumption that the grains grow smoothly and in a regular shape. With the power of the X-rays at the ESRF, researchers have proved that the grains grow very irregularly. These changes of aluminium are of great importance for manufacturers in order to know how to process it to get certain properties, such as more strength.

The experiment is a real breakthrough in the field, since the previous studies on metals were in 2D and focused on the surface. The team has achieved measurements that go into the bulk, which has a very different structure than the surface. They followed the grain as it grew after annealing the metal. “Individual grains don’t behave like average and having a look at the local scale will help to create a better model”, explains Lawrence Margulies, one of the authors of the paper.


The in situ measurements were done using the 3D X-ray diffraction microscope at the ESRF. The sample had a pre-annealing period of one hour at 260°C. Afterwards, it was put in a furnace that rose the temperature from 270° C to 290°C. Researchers took 73 snapshots of the grain during almost 30 hours and made a movie where one can clearly see the irregular growth of the grain in a micrometre spatial resolution.

The technique developed at the ESRF is non-destructive and can also be used to determine the microstructures of other metals, ceramics or polymers in a spatial resolution of micrometres and a time resolution of minutes.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>