Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight Into Aluminium

12.07.2004


Aluminium is a metal widely used in industry; therefore the more that is known about it, the more effectively it can be used. Researchers at Risø National Laboratory in Denmark and the European Synchrotron Radiation Facility (ESRF) in France have filmed in 3D the changes in the bulk of deformed aluminium after annealing. Thanks to the uniqueness of the synchrotron light at the ESRF, this kind of experiment could take place for the first time ever. The results give a new insight into this metal and contradict classical assumptions. They are published today in the journal Science.



Take a can. The aluminium that you see has been processed before having the shape of a cylinder. In a first stage, the aluminium is deformed. The energy is concentrated in its bulk. Then it goes through a process of annealing to get the shape of the can. In the annealing process, grains grow in the bulk. Up to now, there was a general assumption that the grains grow smoothly and in a regular shape. With the power of the X-rays at the ESRF, researchers have proved that the grains grow very irregularly. These changes of aluminium are of great importance for manufacturers in order to know how to process it to get certain properties, such as more strength.

The experiment is a real breakthrough in the field, since the previous studies on metals were in 2D and focused on the surface. The team has achieved measurements that go into the bulk, which has a very different structure than the surface. They followed the grain as it grew after annealing the metal. “Individual grains don’t behave like average and having a look at the local scale will help to create a better model”, explains Lawrence Margulies, one of the authors of the paper.


The in situ measurements were done using the 3D X-ray diffraction microscope at the ESRF. The sample had a pre-annealing period of one hour at 260°C. Afterwards, it was put in a furnace that rose the temperature from 270° C to 290°C. Researchers took 73 snapshots of the grain during almost 30 hours and made a movie where one can clearly see the irregular growth of the grain in a micrometre spatial resolution.

The technique developed at the ESRF is non-destructive and can also be used to determine the microstructures of other metals, ceramics or polymers in a spatial resolution of micrometres and a time resolution of minutes.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>