Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Fibers Baked To Make Filters

09.07.2004


In automotive catalytic converters and industrial exhaust gas filters, porous materials play a crucial role: they filter and break down hot waste gases. It is now possible to process virtually all metal alloys into fibers which can be used to make open-pored sintered materials.

The requirements to be met by a coffee filter are simple: it must retain the powder and not be decomposed by the hot water. The conditions for dealing with exhaust gases in industrial processes are much tougher: temperatures of several hundred degrees and aggressive media are no rarity. In such conditions, manufacturers need different filter materials than cellulose or textiles in order to remove particles and pollutants. A solution is provided by filters made of metal, as produced by researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM. The filters are made of small metallic fibers - a few millimeters long and just a tenth of a millimeter thick. Depending on the application, they can be baked to make semis such as rings, tubes or disks.

In conventional fiber manufacture, however, the metal must be formable. “High-temperature alloys containing lots of aluminum are too brittle for this purpose,” explains Olaf Andersen from the institute’s Powder Metallurgy and Composite Materials unit in Dresden. “We can make fibers from virtually any metal or alloy. This allows us to produce particularly heat-resistant or catalytically active filters tailor-made for specific applications.” The extremely wide range of materials is made possible by a new process applied by Andersen and his colleagues. Formability is not a requirement because the fibers are drawn directly from molten metal. A cooled roll with a fine profile rotates over the melt. The raised areas of the roll’s profile determine the length and width of the resulting fibers. Where they touch the liquid metal’s surface, it cools down, solidifies, contracts and finally disengages from the roll as a thin fiber. In a second step the scientists pack the finished fibers in a mold, cover it with a plate and heat the fibers until they are close to melting point. During sintering the cover plate drops down gradually until it reaches a spacer. The remaining volume and the fiber length determine the size of the cavities in the finished filter.



The porous metal filters are used, for example, to protect electric motors. If the motor catches fire or explodes, the hot gases are expelled through the filter. They cool down rapidly on the large inner metal surface, which reduces risks and further damages. In an EU project, the IFAM researchers are developing a melting furnace filter in cooperation with the French company LECES based near Metz. As the exhaust gases from the furnaces contain dioxins, the filters need to be catalytically active in order to effectively destroy these toxic substances.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>