Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amorphous Steel: Three Times Stronger and Non-magnetic


Scientists at the University of Virginia have announced the discovery of a non-magnetic amorphous material that is three times stronger than conventional steel and has superior anti-corrosion properties. A future variation of the new material, called DARVA-Glass 101, could be used for making ship hulls, lighter automobiles, tall buildings, corrosion-resistant coatings, surgical instruments and recreational equipment. The scientists say commercial use of the material could be available within three to five years.

The material, made up of steel alloys that possess a randomized arrangement of atoms -- thus “amorphous steel” -- was discovered by modifying an earlier version of amorphous steel known as DARVA-Glass 1 reported by the U.Va. researchers at the Fall 2002 meeting of the Materials Research Society. In May of this year they reported on DARVA-Glass 101 in the Journal of Materials Research.

“Amorphous steels can potentially revolutionize the steel industry,” said Joseph Poon, professor of physics at U.Va. and principal investigator for the team that has discovered the material and is now making alterations of it for possible future use in mass production.

Poon’s U.Va. co-investigators are Gary Shiflet, professor of materials science and engineering, and Vijayabarathi Ponnambalam, materials physicist. Their amorphous steel project at U.Va is sponsored by the Defense Advanced Research Projects Agency’s Structural Amorphous Metals Program.

According to Poon, researchers have been trying for years to make amorphous steel in sizes large enough to have practical use. The U.Va researchers have succeeded in producing large-size amorphous steel samples that can be further scaled up. They achieve this by adding a small dose of a rare earth element or yttrium to DARVA-Glass 1. The researchers believe that the large size rare earth or yttrium atom causes destabilization of the competing crystal structure wherein the significant atomic level stress can lead to the formation of the amorphous structure. These discoveries make the U.Va. researchers optimistic that the material will be economically available within the decade.

In a separate work, a group led by C.T. Liu, a physicist at the Oak Ridge National Laboratory in Tennessee, has also reported on large size amorphous steel similar to DARVA-Glass 101 in the June issue of Physical Review Letters, also by modifying the DARVA-Glass 1 discovered by the U.Va scientists.

Poon said the amorphous steel is extremely strong, but brittle in its current state. “We need to toughen the material more,” he said. “We can always make it better.”

According to the U.Va. researchers, amorphous steel can be machined as well as manipulated like a plastic. “It can be squeezed, compressed, flattened and shaped.” Poon said.

The material is of particular interest to the Navy for making non-magnetic ship hulls, particularly for submarines, which are detectable by the magnetic field of their hulls. The amorphous steel that the U.Va. team is refining is non-magnetic, potentially making a ship invisible to magnetism detectors and mines that are detonated by magnetic fields. The new material also may be useful for producing lighter but harder armor-piercing projectiles. The publicly traded company Liquidmetal Technologies owns an exclusive license to the amorphous steel invented by the U.Va. scientists.

Other possible uses include recreational equipment such as tennis racquets, golf clubs and bicycles as well as electronic devices.

| newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>