Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amorphous Steel: Three Times Stronger and Non-magnetic

06.07.2004


Scientists at the University of Virginia have announced the discovery of a non-magnetic amorphous material that is three times stronger than conventional steel and has superior anti-corrosion properties. A future variation of the new material, called DARVA-Glass 101, could be used for making ship hulls, lighter automobiles, tall buildings, corrosion-resistant coatings, surgical instruments and recreational equipment. The scientists say commercial use of the material could be available within three to five years.

The material, made up of steel alloys that possess a randomized arrangement of atoms -- thus “amorphous steel” -- was discovered by modifying an earlier version of amorphous steel known as DARVA-Glass 1 reported by the U.Va. researchers at the Fall 2002 meeting of the Materials Research Society. In May of this year they reported on DARVA-Glass 101 in the Journal of Materials Research.

“Amorphous steels can potentially revolutionize the steel industry,” said Joseph Poon, professor of physics at U.Va. and principal investigator for the team that has discovered the material and is now making alterations of it for possible future use in mass production.


Poon’s U.Va. co-investigators are Gary Shiflet, professor of materials science and engineering, and Vijayabarathi Ponnambalam, materials physicist. Their amorphous steel project at U.Va is sponsored by the Defense Advanced Research Projects Agency’s Structural Amorphous Metals Program.

According to Poon, researchers have been trying for years to make amorphous steel in sizes large enough to have practical use. The U.Va researchers have succeeded in producing large-size amorphous steel samples that can be further scaled up. They achieve this by adding a small dose of a rare earth element or yttrium to DARVA-Glass 1. The researchers believe that the large size rare earth or yttrium atom causes destabilization of the competing crystal structure wherein the significant atomic level stress can lead to the formation of the amorphous structure. These discoveries make the U.Va. researchers optimistic that the material will be economically available within the decade.

In a separate work, a group led by C.T. Liu, a physicist at the Oak Ridge National Laboratory in Tennessee, has also reported on large size amorphous steel similar to DARVA-Glass 101 in the June issue of Physical Review Letters, also by modifying the DARVA-Glass 1 discovered by the U.Va scientists.

Poon said the amorphous steel is extremely strong, but brittle in its current state. “We need to toughen the material more,” he said. “We can always make it better.”

According to the U.Va. researchers, amorphous steel can be machined as well as manipulated like a plastic. “It can be squeezed, compressed, flattened and shaped.” Poon said.

The material is of particular interest to the Navy for making non-magnetic ship hulls, particularly for submarines, which are detectable by the magnetic field of their hulls. The amorphous steel that the U.Va. team is refining is non-magnetic, potentially making a ship invisible to magnetism detectors and mines that are detonated by magnetic fields. The new material also may be useful for producing lighter but harder armor-piercing projectiles. The publicly traded company Liquidmetal Technologies owns an exclusive license to the amorphous steel invented by the U.Va. scientists.

Other possible uses include recreational equipment such as tennis racquets, golf clubs and bicycles as well as electronic devices.

| newswise
Further information:
http://www.virginia.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>