Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amorphous Steel: Three Times Stronger and Non-magnetic

06.07.2004


Scientists at the University of Virginia have announced the discovery of a non-magnetic amorphous material that is three times stronger than conventional steel and has superior anti-corrosion properties. A future variation of the new material, called DARVA-Glass 101, could be used for making ship hulls, lighter automobiles, tall buildings, corrosion-resistant coatings, surgical instruments and recreational equipment. The scientists say commercial use of the material could be available within three to five years.

The material, made up of steel alloys that possess a randomized arrangement of atoms -- thus “amorphous steel” -- was discovered by modifying an earlier version of amorphous steel known as DARVA-Glass 1 reported by the U.Va. researchers at the Fall 2002 meeting of the Materials Research Society. In May of this year they reported on DARVA-Glass 101 in the Journal of Materials Research.

“Amorphous steels can potentially revolutionize the steel industry,” said Joseph Poon, professor of physics at U.Va. and principal investigator for the team that has discovered the material and is now making alterations of it for possible future use in mass production.


Poon’s U.Va. co-investigators are Gary Shiflet, professor of materials science and engineering, and Vijayabarathi Ponnambalam, materials physicist. Their amorphous steel project at U.Va is sponsored by the Defense Advanced Research Projects Agency’s Structural Amorphous Metals Program.

According to Poon, researchers have been trying for years to make amorphous steel in sizes large enough to have practical use. The U.Va researchers have succeeded in producing large-size amorphous steel samples that can be further scaled up. They achieve this by adding a small dose of a rare earth element or yttrium to DARVA-Glass 1. The researchers believe that the large size rare earth or yttrium atom causes destabilization of the competing crystal structure wherein the significant atomic level stress can lead to the formation of the amorphous structure. These discoveries make the U.Va. researchers optimistic that the material will be economically available within the decade.

In a separate work, a group led by C.T. Liu, a physicist at the Oak Ridge National Laboratory in Tennessee, has also reported on large size amorphous steel similar to DARVA-Glass 101 in the June issue of Physical Review Letters, also by modifying the DARVA-Glass 1 discovered by the U.Va scientists.

Poon said the amorphous steel is extremely strong, but brittle in its current state. “We need to toughen the material more,” he said. “We can always make it better.”

According to the U.Va. researchers, amorphous steel can be machined as well as manipulated like a plastic. “It can be squeezed, compressed, flattened and shaped.” Poon said.

The material is of particular interest to the Navy for making non-magnetic ship hulls, particularly for submarines, which are detectable by the magnetic field of their hulls. The amorphous steel that the U.Va. team is refining is non-magnetic, potentially making a ship invisible to magnetism detectors and mines that are detonated by magnetic fields. The new material also may be useful for producing lighter but harder armor-piercing projectiles. The publicly traded company Liquidmetal Technologies owns an exclusive license to the amorphous steel invented by the U.Va. scientists.

Other possible uses include recreational equipment such as tennis racquets, golf clubs and bicycles as well as electronic devices.

| newswise
Further information:
http://www.virginia.edu

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>