Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of liquid crystal identified; Holds promise of faster, lower priced liquid crystal displays

15.06.2004


A new type of liquid crystal - recently discovered by a research team that includes a Kent State University professor - holds the promise of faster liquid crystal displays at a lower price.



A new liquid crystal phase – the biaxial nematic liquid crystal - which is likely to revolutionize the liquid crystal display technology, has been discovered by three researchers, Dr. Satyendra Kumar, professor of physics at Kent State; Dr. Bharat R. Acharya, of Platytus Technologies, Madison, WI; and Dr. Andrew Primak, of Pacific Northwest National Lab, Richland, WA.

Currently, the liquid crystal displays used in most laptops and televisions make use of the uniaxial nematic liquid crystal. It is predicted that the use of biaxial nematic liquid crystals will make these products more than 10 times faster and will allow for cost-saving measures.


The existence of the biaxial nematic liquid crystal was predicted 34 years ago by IBM’s Thomas J. Watson Research Center in Yorktown Heights, N.Y.

However, according to Acharya, "There was no evidence of the existence of biaxial nematic liquid crystals made of single molecules until recently. Other types of more complex micellar biaxial liquid crystals were found previously by Kent State researchers, but, until now, none had the right optical properties for use in displays and photonics devices."

A paper reporting how the researchers used small-angle X-ray diffraction technique to discover the biaxial nematic liquid crystal appeared in the April 9 issue of the prestigious Physical Review Letters. Kent State researchers also presented their initial evidence in 2000 at the March meeting of the American Physical Society. This research will be presented by Kumar in an invited talk at the International Liquid Crystal Conference in Slovenia on July 6, 2004.


For more information, Dr. Kumar can be reached at 330-672-2566 or skumar@kent.edu.

Carole Harwood | EurekAlert!
Further information:
http://www.kent.edu/

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>