Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of liquid crystal identified; Holds promise of faster, lower priced liquid crystal displays

15.06.2004


A new type of liquid crystal - recently discovered by a research team that includes a Kent State University professor - holds the promise of faster liquid crystal displays at a lower price.



A new liquid crystal phase – the biaxial nematic liquid crystal - which is likely to revolutionize the liquid crystal display technology, has been discovered by three researchers, Dr. Satyendra Kumar, professor of physics at Kent State; Dr. Bharat R. Acharya, of Platytus Technologies, Madison, WI; and Dr. Andrew Primak, of Pacific Northwest National Lab, Richland, WA.

Currently, the liquid crystal displays used in most laptops and televisions make use of the uniaxial nematic liquid crystal. It is predicted that the use of biaxial nematic liquid crystals will make these products more than 10 times faster and will allow for cost-saving measures.


The existence of the biaxial nematic liquid crystal was predicted 34 years ago by IBM’s Thomas J. Watson Research Center in Yorktown Heights, N.Y.

However, according to Acharya, "There was no evidence of the existence of biaxial nematic liquid crystals made of single molecules until recently. Other types of more complex micellar biaxial liquid crystals were found previously by Kent State researchers, but, until now, none had the right optical properties for use in displays and photonics devices."

A paper reporting how the researchers used small-angle X-ray diffraction technique to discover the biaxial nematic liquid crystal appeared in the April 9 issue of the prestigious Physical Review Letters. Kent State researchers also presented their initial evidence in 2000 at the March meeting of the American Physical Society. This research will be presented by Kumar in an invited talk at the International Liquid Crystal Conference in Slovenia on July 6, 2004.


For more information, Dr. Kumar can be reached at 330-672-2566 or skumar@kent.edu.

Carole Harwood | EurekAlert!
Further information:
http://www.kent.edu/

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>