Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students fashion space suits for Mars

24.05.2004


As if getting to Mars wasn’t hard enough, astronauts also have to worry about what to wear when they arrive. Their concerns are not fashion pundits but exposure to micrometeor sandstorms, radiation, and a hyper-cold climate.



However, three undergraduate students at the University of Alberta - Jennifer Marcy, Ann Shalanski, and Matthew Yarmuch - addressed the problem in Dr. Barry Patchett’s Materials Design 443 class and have published their findings in the Journal of Materials Engineering and Performance. Students in the class are asked to take something that already exists and improve its performance and design by using new materials.

Patchett said that the space suit for Mars is the first design created in the class that he felt could stand up to the peer review process required for publication. "It is the best project I’ve seen in over a decade," he said.


"I don’t know why we decided to design a space suit," Yarmuch said. "Nothing like it had ever been designed in the class before, so I guess that was the main attraction."

The three materials engineering students began by studying, layer by layer, the space suits NASA developed for trips to the moon. Suits made for Mars, however, will require much more thought than the ones produced for the moon, Yarmuch said. "Mars has nothing for atmosphere. There’s some carbon dioxide, but that’s about it for gases."

Unlike Earth, Mars does not have a magnetosphere to protect it from radiation and meteors and micrometeors, and astronauts on Mars will also have to deal with average temperatures of –60C. In creating their design, the students tried to balance these concerns with the need to create a suit that the astronauts could move about in as they explored.

"The gravitational force on Mars is about one-third of that on Earth, so if you built the suit with lead to protect the astronauts from the radiation, it would still end up weighing a few hundred kilograms, and the poor guys wouldn’t be able to move," Yarmuch said.

The suit includes ball bearings and bearing and compression rings, and one of the 12 layers of material the students incorporated into their design is Demron, a new polymeric created by a company called Radiation Shield Technologies (RST). As the students completed their theoretical design using computer-aided design software, they did not worry about costs, which "would have been very high" if they produced an actual suit, Yarmuch said.

"We asked RST for an estimate on the cost of Demron, but because it’s such a new product and we were only asking them for a speculative price, they didn’t even want to give us a number," Yarmuch said. "Ultimately, we designed [the suit] without concern for cost--we went cutting edge on everything."

Two of the reviewers on the editorial board for the Journal of Materials Engineering and Performance are from NASA, Patchett noted, so perhaps one day parts of the U of A students’ space suit design will be incorporated into a suit built by NASA.

"That would be very cool," Yarmuch added. "The development of a real suit to be used on a real mission to Mars is probably still a couple of decades away at least, but I think our research will help point future researchers in the right direction."


Dr. Barry Patchett can be reached at 780-492-2604 or barry.patchett@ualberta.ca

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>