Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Students fashion space suits for Mars


As if getting to Mars wasn’t hard enough, astronauts also have to worry about what to wear when they arrive. Their concerns are not fashion pundits but exposure to micrometeor sandstorms, radiation, and a hyper-cold climate.

However, three undergraduate students at the University of Alberta - Jennifer Marcy, Ann Shalanski, and Matthew Yarmuch - addressed the problem in Dr. Barry Patchett’s Materials Design 443 class and have published their findings in the Journal of Materials Engineering and Performance. Students in the class are asked to take something that already exists and improve its performance and design by using new materials.

Patchett said that the space suit for Mars is the first design created in the class that he felt could stand up to the peer review process required for publication. "It is the best project I’ve seen in over a decade," he said.

"I don’t know why we decided to design a space suit," Yarmuch said. "Nothing like it had ever been designed in the class before, so I guess that was the main attraction."

The three materials engineering students began by studying, layer by layer, the space suits NASA developed for trips to the moon. Suits made for Mars, however, will require much more thought than the ones produced for the moon, Yarmuch said. "Mars has nothing for atmosphere. There’s some carbon dioxide, but that’s about it for gases."

Unlike Earth, Mars does not have a magnetosphere to protect it from radiation and meteors and micrometeors, and astronauts on Mars will also have to deal with average temperatures of –60C. In creating their design, the students tried to balance these concerns with the need to create a suit that the astronauts could move about in as they explored.

"The gravitational force on Mars is about one-third of that on Earth, so if you built the suit with lead to protect the astronauts from the radiation, it would still end up weighing a few hundred kilograms, and the poor guys wouldn’t be able to move," Yarmuch said.

The suit includes ball bearings and bearing and compression rings, and one of the 12 layers of material the students incorporated into their design is Demron, a new polymeric created by a company called Radiation Shield Technologies (RST). As the students completed their theoretical design using computer-aided design software, they did not worry about costs, which "would have been very high" if they produced an actual suit, Yarmuch said.

"We asked RST for an estimate on the cost of Demron, but because it’s such a new product and we were only asking them for a speculative price, they didn’t even want to give us a number," Yarmuch said. "Ultimately, we designed [the suit] without concern for cost--we went cutting edge on everything."

Two of the reviewers on the editorial board for the Journal of Materials Engineering and Performance are from NASA, Patchett noted, so perhaps one day parts of the U of A students’ space suit design will be incorporated into a suit built by NASA.

"That would be very cool," Yarmuch added. "The development of a real suit to be used on a real mission to Mars is probably still a couple of decades away at least, but I think our research will help point future researchers in the right direction."

Dr. Barry Patchett can be reached at 780-492-2604 or

Ryan Smith | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>