Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students fashion space suits for Mars

24.05.2004


As if getting to Mars wasn’t hard enough, astronauts also have to worry about what to wear when they arrive. Their concerns are not fashion pundits but exposure to micrometeor sandstorms, radiation, and a hyper-cold climate.



However, three undergraduate students at the University of Alberta - Jennifer Marcy, Ann Shalanski, and Matthew Yarmuch - addressed the problem in Dr. Barry Patchett’s Materials Design 443 class and have published their findings in the Journal of Materials Engineering and Performance. Students in the class are asked to take something that already exists and improve its performance and design by using new materials.

Patchett said that the space suit for Mars is the first design created in the class that he felt could stand up to the peer review process required for publication. "It is the best project I’ve seen in over a decade," he said.


"I don’t know why we decided to design a space suit," Yarmuch said. "Nothing like it had ever been designed in the class before, so I guess that was the main attraction."

The three materials engineering students began by studying, layer by layer, the space suits NASA developed for trips to the moon. Suits made for Mars, however, will require much more thought than the ones produced for the moon, Yarmuch said. "Mars has nothing for atmosphere. There’s some carbon dioxide, but that’s about it for gases."

Unlike Earth, Mars does not have a magnetosphere to protect it from radiation and meteors and micrometeors, and astronauts on Mars will also have to deal with average temperatures of –60C. In creating their design, the students tried to balance these concerns with the need to create a suit that the astronauts could move about in as they explored.

"The gravitational force on Mars is about one-third of that on Earth, so if you built the suit with lead to protect the astronauts from the radiation, it would still end up weighing a few hundred kilograms, and the poor guys wouldn’t be able to move," Yarmuch said.

The suit includes ball bearings and bearing and compression rings, and one of the 12 layers of material the students incorporated into their design is Demron, a new polymeric created by a company called Radiation Shield Technologies (RST). As the students completed their theoretical design using computer-aided design software, they did not worry about costs, which "would have been very high" if they produced an actual suit, Yarmuch said.

"We asked RST for an estimate on the cost of Demron, but because it’s such a new product and we were only asking them for a speculative price, they didn’t even want to give us a number," Yarmuch said. "Ultimately, we designed [the suit] without concern for cost--we went cutting edge on everything."

Two of the reviewers on the editorial board for the Journal of Materials Engineering and Performance are from NASA, Patchett noted, so perhaps one day parts of the U of A students’ space suit design will be incorporated into a suit built by NASA.

"That would be very cool," Yarmuch added. "The development of a real suit to be used on a real mission to Mars is probably still a couple of decades away at least, but I think our research will help point future researchers in the right direction."


Dr. Barry Patchett can be reached at 780-492-2604 or barry.patchett@ualberta.ca

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>