Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic forces may turn some nanotubes into metals

21.05.2004


Research documents first instance of band-gap shrinkage in a semiconductor



A new study, published in today’s issue of the journal Science, finds that the basic electrical properties of semiconducting carbon nanotubes change when they are placed inside a magnetic field. The phenomenon is unique among known materials, and it could cause semiconducting nanotubes to transform into metals in even stronger magnetic fields.

Scientists found that the "band gap" of semiconducting nanotubes shrank steadily in the presence of a strong magnetic force, said lead researcher Junichiro Kono, an assistant professor of electrical and computer engineering at Rice University. The research, which involved a multidisciplinary team of electrical engineers, chemists and physicists, helps confirm quantum mechanical theories offered more than four decades ago, and it sheds new light on the unique electrical properties of carbon nanotubes, tiny cylinders of carbon that measure just one-billionth of a meter in diameter.


"We know carbon nanotubes are exceptionally strong, very light and imbued with wonderful electrical properties that make them candidates for things like ’smart’ spacecraft components, ’smart’ power grids, biological sensors, improved body armor and countless other applications," said paper co-author Richard Smalley, director of Rice’s Carbon Nanotechnology Laboratory. "These findings remind us that there are still unique and wonderful properties that we have yet to uncover about nanotubes."

By their very nature, semiconductors can either conduct electricity, in the same way metals do, or they can be non-conducting, like plastics and other insulators. This simple transformation allows the transistors inside a computer to be either "on" or "off," two states that correspond to the binary bits -- the 1’s and 0’s -- of electronic computation.

Semiconducting materials like silicon and gallium arsenide are the mainstays of the computer industry, in part because they have a narrow "band gap," a low energy threshold that corresponds to how much electricity it takes to flip a transistor from "off" to "on."

"Among nanotubes with band gaps comparable to silicon and gallium arsenide, we found that the band gap shrank as we applied high magnetic fields," said physicist Sasa Zaric, whose doctoral dissertation was based upon the work. "In even stronger fields, we think the gap would disappear altogether."

Nanotubes, hollow cylinders of pure carbon that are just one atom thick, come in dozens of different varieties, each with a subtle difference in diameter or physical structure. Of these varieties roughly one third are metals and the rest are semiconductors.

In the experiments, which were performed at the National High Magnetic Field Laboratory (NHMFL) at Florida State University, Kono’s group placed solutions of nanotubes inside a chamber containing very strong magnetic fields. Lasers were shined at the samples, and conclusions were drawn based upon an analysis of the light that was emitted and absorbed by the samples.

"The behavior we observed is unique among known materials, but it is consistent with theoretical predictions, and we believe we understand what’s causing it," said Kono. "Our data show, for the first time, that the so-called Aharonov-Bohm phase can directly affect the band structure of a solid. The Aharonov-Bohm effect has been observed in other physical systems, but this is the first case where the effect interferes with another fundamental solid-state theorem, that is, the Bloch theorem. This arises from the fact that nanotubes are crystals with well-defined lattice periodicity. I wouldn’t be surprised to see a corresponding effect in other tubular crystals like boron nitride nanotubes."

Kono said the discovery could lead to novel new experiments on one-dimensional magneto-excitons, quantum pairings that are interesting to researchers studying quantum computing, nonlinear optics and quantum optics. Kono said it’s too early to predict what types of applied science might flow from the discovery.

The NHMFL experiments were conducted in fields up to 45 Tesla in strength -- the strongest continuous magnetic field in any lab in the world. Kono said he is arranging for additional tests in stronger magnetic fields. He has already met with research groups in France, Tokyo and at New Mexico’s Los Alamos National Laboratory, each of which has facilities that use brief pulses of power to create short-lived magnetic fields that are exceptionally strong.


The research was supported by the Welch Foundation, the Texas Advanced Technology Program, the National Science Foundation, the NHMFL and the State of Florida. Other co-authors included NHMFL’s Xing Wei, and Rice’s Robert Hauge, Gordana Ostojic, Jonah Shaver, Valerie Moore and Michael Strano. Rice’s team represented the Carbon Nanotechnology Laboratory, the Center for Nanoscale Science and Technology, the Center for Biological and Environmental Nanotechnology and the Rice Quantum Institute.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>