Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing superficial hardening in materials used in aeronautics or biomedicine

12.05.2004


Researchers at the Public University of Navarre and the Navarre Industry Association research centre have managed to increase by 30 to 500 % the superficial hardness and resistance to wear of metals and V5Ti alloys by means of applying nitrogen. These results could be of great use for different industrial applications in which these types of materials are employed such as in the aeronautic and biomedical sectors.

Economic losses

The wear and tear of tools and machine tools is one of industry’s main problems when trying to reduce energy consumption and atmospheric contamination. The problem gives rise to important economic losses.



This fact has fed the growing demand for new, so-called second-generation materials, where optimisation of the surface properties of the material is sought without altering the properties of the volume of the material. This involves working with materials that have enhanced tribological characteristics (low friction coefficient, hardness, resistance to wear and to oxidation).

With this in mind, techniques involving ionic implantation have been shown to be a highly efficacious tool in this enhancement of surface properties. These techniques consist of ionising the atoms of nitrogen so that, after accelerating them, cause them to hit the surface we wish to modify. When these nitrogen ions enter the material surface, a number of effects are produced; amongst which are chemical reactions which drastically change the properties of the surface, such as resistance to wear and the coefficient friction.

University-enterprise co-operation

The work was carried out at the Navarre Industry Association’s installations – the Centre for the Advanced Engineering of Surfaces.

This co-operation has enabled the research results to be applied in real time in those business companies that are members of the Navarre Industry Association, particularly in those sectors involving energy generation and biomedical applications.

With this we can draw the conclusion that the techniques of ionic implantation are a highly efficacious tool in this enhancement of surface properties of tools and machine tools. Not only on steel and titanium alloy surfaces, but also with other kinds of metal such as vanadium or vanadium 5 – titanium.

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=473&hizk=I
http://www.unavarra.es

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>