Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser technique used to build micro-polymeric structure on a human hair, without harming it

04.05.2004


First demonstration that ’MAP’ laser technique can be used non-destructively on biomaterials; potential applications range from medical research to fiber optics



Researchers in the laboratory of Boston College Chemistry Professor John T. Fourkas have demonstrated the fabrication of microscopic polymeric structures on top of a human hair.

Fourkas, in collaboration with Boston College Physics Professor Michael J. Naughton and Professors Malvin C. Teich and Bahaa E. A. Saleh of the Department of Electrical and Computer Engineering at Boston University, used a technique called multiphoton-absorption photopolymerization (MAP), in which a polymer can be deposited at the focal point of a laser beam; scanning of the laser beam in a desired pattern then allows for the formation of intricate, three-dimensional patterns. This technique, also being explored by a handful of other groups worldwide, makes it possible to create features that are 1000 times smaller than the diameter of a human hair.


These new results show for the first time that MAP can be used to fabricate structures nondestructively on biomaterials, and point the way towards applications of MAP in the creation of miniature biodevices, which could include micromanipulators for cells or even individual protein or DNA molecules.

The findings will be published in the June 1 issue of Journal of Applied Physics.

The original purpose of the study was to demonstrate that intricate and resilient structures could be created with MAP using inexpensive and readily-available materials.

In order to demonstrate the size of the features that could be created, the researchers fabricated structures near a human hair, and in the course of these experiments they discovered that it was also possible to fabricate structures on the hair itself.

"We built the structure on top of the hair with a material that is akin to plexiglass," said Fourkas. "One of the really exciting and unexpected things about this is that we found that we could make this structure on the hair without harming it in any way. This suggests that we could accomplish the same with other biological materials. One could imagine, for instance, building devices directly on skin, blood vessels, and eventually even a living cell. While this idea is currently in the realm of science fiction, our results represent an important step in that direction.

"On the level of individual cells, one can imagine making devices that can tether cells to a surface or to each other, or that allow the delivery of particular chemicals to the cell, or that monitor processes within the cell," explained Fourkas. "On a larger scale, if the same sort of structures can be constructed from biocompatible materials one can imagine applications in drug delivery and medical monitoring, among other areas."

Three-dimensional structures created with this technique also have the potential to be used in other miniature devices, such as optical communications hardware: fiber optics and the hardware that is used to interface them with electronics.

"While there are applications of the technique we used in the optical communications area that are being pursued by us and by others, writing a structure on a hair does not have direct bearing on optical communications," Fourkas said. "On the other hand, we can and have done exactly the same sort of thing on optical fibers that are of comparable size, and this does have direct bearing."

John Fourkas | EurekAlert!
Further information:
http://www.bc.edu/

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>