Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wet scans

20.04.2004


The "scanning electron microscope" (SEM) has been a basic research tool for fifty years, and for those fifty years, scientists have been looking for better ways to observe biological samples under its beam. The problem is that the viewing chamber of the SEM must contain a vacuum (in which liquid water in tissues "boils" away). To overcome this difficulty, scientists have had to resort to all sorts of complicated procedures, including coating the specimens with an ultra-fine layer of gold, quick-freezing samples in special deep-freezes, or treating them with drying solvents.



Now, scientists at the Weizmann Institute of Science have found a way to view samples of biological materials in their natural, "wet" state. Their secret lies in the production of a very thin but tough polymer capsule to enclose the sample, allowing it to withstand the force of the vacuum. Says Dr. Ory Zik, who worked on the capsule with Professor Elisha Moses of the Physics of Complex Systems Department: "The material for the capsule is a result of advances in the area of semiconductors. We came across it while researching ways to apply automation techniques used in the semiconductor industry to the life sciences’ scanning electron microscopes."

The capsule’s polymer is unique in that it is allows the electrons with which a SEM works to pass through unobstructed, giving scientists a clear view of what lies within, without the use of tricky, tissue-distorting procedures. Researchers hope the new method will advance the studies of biological materials, such as the lipids that make up fat, which are easily destroyed by the old sample preparation methods.


Since the discovery was made, Zik, in cooperation with Yeda, the business arm of the Weizmann Institute, has founded a company, called QuantomiX, based on this technology. The findings of the team were published in the March 9 Proceedings of the National Academy of Sciences, USA (PNAS).


Prof. Elisha Moses’s research is supported by the Clore Center for Biological Physics and the Rosa and Emilio Segre Research Award.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>