Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecule Heralds Breakthrough in Electronic Plastics

13.04.2004


An organic solution of Oligotron mixed with chemicals that help the material set under ultraviolet light (top, in vial); a "mask," made by a laser printer on an overhead transparency, which was used to control the exposure of light (middle); and a photoprinted “NSF” image after exposure to ultraviolet light and rinsing (bottom).

Credit: Photo by Brian J. Elliott, TDA Research, Inc.


New material could mean easier manufacture of paper-thin TVs and "smart" cloth

Researchers have developed a new plastic that conducts electricity, may be simpler to manufacture than industry counterparts and easily accommodates chemical attachments to create new materials.

Developed by TDA Research in Wheat Ridge, Colo., Oligotron polymers are made of tiny bits of material that possess a conducting center and two, non-conducting end pieces. The end pieces allow the plastic bits to dissolve in solvents and accommodate specialized molecules.



For decades, researchers have been trying to craft electronics that use plastics instead of metal to transmit currents. In addition to the potential savings in weight and cost, conducting polymers could be manufactured in a variety of convenient shapes, yielding such innovations as fabrics that transmit data and incredibly thin video displays.

However, because conducting polymers initially were not soluble in liquids, they could not be manufactured as easily as could their common counterparts used in soda bottles and synthetic fibers. Recent discoveries resulted in a water-soluble conducting polymer called PEDOT (polyethylenedioxythiophene), yet water can corrode device parts during manufacturing and shorten the lifespan of the end product.

Oligotron, developed with National Science Foundation (NSF) Small Business Innovation Research (SBIR) support, contains a PEDOT center, but it is soluble in non-corrosive chemicals and can attach new compounds to its end pieces, adding a variety of functions. For example, researchers have proposed end pieces that convert solar energy into electricity, ultimately creating a novel solar cell material.

Oligotron also has special properties that allow the material to be "printed" into various device shapes. When technicians shine a pattern of ultraviolet light, such as a complex circuit image, onto a film of dissolved Oligotron, the exposed areas of plastic become "fixed" like a photograph. Flexible and lightweight, the circuit is also fully functional.

TDA researchers predict applications for the product that range from flexible television displays and smart cards to antistatic treatments and conducting fabrics.

Oligotron is a trademark of TDA Research, Inc.

Comments from the researchers:

"Through our research we discovered that by attaching molecules to the ends of the PEDOT, the chemical could easily disperse in organic solvents, something we have not seen with typical conducting polymers."– Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"When we added photo-sensitive end groups to the Oligotron we created a material that could be printed using an ultraviolet light source. Using a patterned light source resulted in a patterned image that could conduct electricity." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We began this research with the goal of developing easier methods to manufacture electronic devices with conducting polymers. We wanted to solve the problems related to the difficulties of dispersing conducting polymers in non-corrosive, organic solvents and create an easy method to print detailed features." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We were surprised to discover that the Oligotron could conduct electricity almost as well as the completely non-dispersible, pure form of the PEDOT polymer." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"The reactive chemical groups on the ends of the Oligotron molecules will allow other scientists to synthesize new molecules, building additional functionality onto the molecule. These molecules will allow chemists to use their creativity to invent new materials with conducting polymers." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

NSF comments regarding the discovery:

"Flat-panel displays are probably the largest market for organic electronic materials. The development of soluble polymers could have a large impact on the cost and ease of processing these displays." – Winslow Sargeant, the NSF program officer who oversees TDA’s award.

"This is a significant breakthrough: a soluble and highly conductive multi-block copolymer, with its ability to be photo-crosslinked, could lead to a printable conducting polymer with a high conductivity."

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=73

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>