Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals Halogen Characteristics

02.04.2004


A stable cluster of aluminum atoms, Al13, acts as a single entity in chemical reactions, demonstrating properties similar to those of a halogen, reports a research team led by A. Welford Castleman Jr., the Evan Pugh Professor of Chemistry and Physics and the Eberly Family Distinguished Chair in Science at Penn State, in a paper to be published in the 2 April 2004 issue of the journal Science. Experimental results and theoretical calculations indicate that the cluster chemically resembles a "superhalogen" atom, retaining its properties during the reaction and in reaction products. Other team members include Denis E. Bergeron of the Penn State departments of chemistry and physics and Shiv N. Khanna of the Virginia Commonwealth University department of Physics. One implication of the research is the possibility of using such clusters as building blocks in nanoscale fabrication.


Figure 1: Charge density map of the highest occupied molecular orbital for the Al13I- cluster. Note the preservation of Al13I- icosahedral geometry, and the localized charge density on the aluminum cluster moiety. Color code: blue=aluminum; red=iodine.


Figure 2: Top Image: Lowest energy structure for Al13I-. Color code: blue=aluminum; red=iodine

Bottom Image: Charge density map of the highest occupied molecular orbital for Al13I-. Color code: blue=aluminum; red=iodine



The project focused on experimental evidence of the existence of a very stable cluster anion, Al13I-, prepared by the gas-phase reaction of aluminum clusters with HI gas. Mass spectrometric analysis indicated that the reaction produced relatively few products, the most abundant corresponding to Al13I-. Energy calculations to determine the bonding mechanism between the aluminum cluster and the iodine atom indicate that the extra electron is localized on the Al13 cluster, meaning that the cluster maintains its integrity throughout the reaction. Because the cluster has a greater electron affinity in the compound, or attraction to the free electron, than does iodine, it can be considered a "superhalogen."

"One of the themes of our research is using the clusters as building blocks for new nanoscale materials," says Castleman. "In many cases, people have worked from the top down; that is, subdividing matter to get it smaller and smaller. We’re trying to work with atoms and molecules and put them together--working our way from the bottom up. If we can retain the properties of aggregates, as we put them together, perhaps we will be able to construct new nanoscale materials." The key to using the aggregates as building blocks is that they retain their individual properties during the reaction and do not coalesce into a large aggregate.


One goal of the research is to test the Jellium model of stable clusters, which treats metal atoms in a small system as positive cores surrounded by the valence electrons. The model predicts certain closed-shell arrangements with high stability, called magic clusters. In the Jellium model, the cluster’s atomic nuclei and inner electrons are seen as a single, spherical, positively charged core, surrounded by valence electrons in electronic shells similar to those of atoms. Essentially, the magic clusters can be viewed as superatoms, capable of forming compounds.

"When we started looking at reactions, Al13 turned out to be a very interesting species for several reasons, " says Castleman. "It behaves very much like a halogen, somewhere between iodine and bromine the way it wants to bind an electron. If we could put an iodine atom in contact with Al133, the Al13 has a little higher electron affinity than iodine, which could allow the Al13 to retain the electron, thereby bonding the Al133 and I together."

Experimental observations indicated that the stability of the Al13I- ion is comparable to that of BrI-, a well-known and very stable molecular halogen ion. The ability of a cluster of aluminum atoms to behave like a halogen opens up the prospect that Al13 and other magic clusters can retain their properties as a building block for assembling new materials.

"This superhalogen is not disrupted even in the presence of the very reactive iodine atom in close proximity, but still keeps its properties," says Castleman. "Now that we have shown that this is possible, we see potential ways to make other clusters, maybe involving other metals or alloys. It should be possible to construct something in the Jellium framework that would have the properties not only of a halogen, but of other types of atoms as well. For example, the Al13- ion itself resembles a rare gas atom because it is so unreactive. Ideally, we could have a whole series of clusters--a ’three dimensional’ periodic table, not of elements but rather of clusters simulating the properties of the elements." The goal is to use these clusters as building blocks to tailor the design and formation of nanoscale materials with selected properties.

This research was supported by the U. S. Air Force Office of Scientific Research and the U. S. Department of Energy.

Barbara K. Kennedy | Penn State
Further information:
http://www.science.psu.edu/alert/Castleman3-2004.htm

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>