Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Reveals Halogen Characteristics


A stable cluster of aluminum atoms, Al13, acts as a single entity in chemical reactions, demonstrating properties similar to those of a halogen, reports a research team led by A. Welford Castleman Jr., the Evan Pugh Professor of Chemistry and Physics and the Eberly Family Distinguished Chair in Science at Penn State, in a paper to be published in the 2 April 2004 issue of the journal Science. Experimental results and theoretical calculations indicate that the cluster chemically resembles a "superhalogen" atom, retaining its properties during the reaction and in reaction products. Other team members include Denis E. Bergeron of the Penn State departments of chemistry and physics and Shiv N. Khanna of the Virginia Commonwealth University department of Physics. One implication of the research is the possibility of using such clusters as building blocks in nanoscale fabrication.

Figure 1: Charge density map of the highest occupied molecular orbital for the Al13I- cluster. Note the preservation of Al13I- icosahedral geometry, and the localized charge density on the aluminum cluster moiety. Color code: blue=aluminum; red=iodine.

Figure 2: Top Image: Lowest energy structure for Al13I-. Color code: blue=aluminum; red=iodine

Bottom Image: Charge density map of the highest occupied molecular orbital for Al13I-. Color code: blue=aluminum; red=iodine

The project focused on experimental evidence of the existence of a very stable cluster anion, Al13I-, prepared by the gas-phase reaction of aluminum clusters with HI gas. Mass spectrometric analysis indicated that the reaction produced relatively few products, the most abundant corresponding to Al13I-. Energy calculations to determine the bonding mechanism between the aluminum cluster and the iodine atom indicate that the extra electron is localized on the Al13 cluster, meaning that the cluster maintains its integrity throughout the reaction. Because the cluster has a greater electron affinity in the compound, or attraction to the free electron, than does iodine, it can be considered a "superhalogen."

"One of the themes of our research is using the clusters as building blocks for new nanoscale materials," says Castleman. "In many cases, people have worked from the top down; that is, subdividing matter to get it smaller and smaller. We’re trying to work with atoms and molecules and put them together--working our way from the bottom up. If we can retain the properties of aggregates, as we put them together, perhaps we will be able to construct new nanoscale materials." The key to using the aggregates as building blocks is that they retain their individual properties during the reaction and do not coalesce into a large aggregate.

One goal of the research is to test the Jellium model of stable clusters, which treats metal atoms in a small system as positive cores surrounded by the valence electrons. The model predicts certain closed-shell arrangements with high stability, called magic clusters. In the Jellium model, the cluster’s atomic nuclei and inner electrons are seen as a single, spherical, positively charged core, surrounded by valence electrons in electronic shells similar to those of atoms. Essentially, the magic clusters can be viewed as superatoms, capable of forming compounds.

"When we started looking at reactions, Al13 turned out to be a very interesting species for several reasons, " says Castleman. "It behaves very much like a halogen, somewhere between iodine and bromine the way it wants to bind an electron. If we could put an iodine atom in contact with Al133, the Al13 has a little higher electron affinity than iodine, which could allow the Al13 to retain the electron, thereby bonding the Al133 and I together."

Experimental observations indicated that the stability of the Al13I- ion is comparable to that of BrI-, a well-known and very stable molecular halogen ion. The ability of a cluster of aluminum atoms to behave like a halogen opens up the prospect that Al13 and other magic clusters can retain their properties as a building block for assembling new materials.

"This superhalogen is not disrupted even in the presence of the very reactive iodine atom in close proximity, but still keeps its properties," says Castleman. "Now that we have shown that this is possible, we see potential ways to make other clusters, maybe involving other metals or alloys. It should be possible to construct something in the Jellium framework that would have the properties not only of a halogen, but of other types of atoms as well. For example, the Al13- ion itself resembles a rare gas atom because it is so unreactive. Ideally, we could have a whole series of clusters--a ’three dimensional’ periodic table, not of elements but rather of clusters simulating the properties of the elements." The goal is to use these clusters as building blocks to tailor the design and formation of nanoscale materials with selected properties.

This research was supported by the U. S. Air Force Office of Scientific Research and the U. S. Department of Energy.

Barbara K. Kennedy | Penn State
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>