Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating polymers that act like biomolecules

01.04.2004


Ames Laboratory researchers studying self-assembling polymers



A group of bioinspired polymers are being studied by researchers at the Department of Energy’s Ames Laboratory to understand how they are able to form and react to stimuli similar to the way proteins, lipids and DNA react in nature. Unlocking how these soluble block polymers are able to self-assemble could potentially lead to a variety of uses such as controlled release systems for sustained and modulated delivery of drugs or gene therapies.

Ames Laboratory materials chemist Surya Mallapragada and her research team are focusing on pentablock polymers - polymers that form in strings of five chains. Each string is comprised of two cationic (positively charged) blocks, two hydrophilic (water loving) blocks, and one hydrophobic block. Because the hydrophobic block tries to avoid water, it forms the center of the string, with the hydrophilic next and the cationic blocks on the outside. In solution, these strings form in small clusters called micelles, again with the hydrophobic blocks at the center.


"The interesting thing about these polymers is that they respond to changes in temperature and pH," Mallapragada says. "As the temperature goes up, the micelles cluster together more, forming a polymer gel. A similar reaction takes place as pH rises - the hydrophobicity of the cationic blocks increases which also helps in gel formation."

As temperature and/or pH drops, the process reverses itself and the gels dissolve back into micelles and polymer strands. Using cryotransmission electron microscopy, Mallapragada’s group is working to understand just how these micelles look and how fast the polymers respond to changes in temperature and pH.

"Samples are plunged into liquid ethane which freezes them so quickly that ice doesn’t form and disrupt the crystal structure," she says. "We’re able to then view the gel formation at various stages (temperature and pH) under very controlled conditions." She adds that this work will be complemented by conducting x-ray scattering studies at the Advanced Photon Source facility at the DOE’s Argonne National Laboratory.

The structure appears to be the key in how the polymers react to stimuli similar to the way biomolecules react in nature. These substances carry out a wide variety of tasks, responding to subtle changes in body chemistry regulating those changes. The problem in working with proteins and similar biomolecules, according to Mallapragada, is that it is difficult to isolate the materials without damaging them.

"Biomolecules often exist in extremely small quantities," she says, "and are not very robust. In separating them from a source, they become denatured or damaged. The polymers we are studying are much more stable, readily available and therefore easier to study."

Because they are easier to work with, the polymers could potentially be modified and used as a way to deliver drugs or gene therapies. For example, incorporating the glucose oxidase enzyme in the polymer would make it sensitive to changes in glucose levels in the body. Soluble at room temperature, the polymer could be injected under the skin where it would form in a gel due to the higher temperature of the body. When the gluconic acid level falls, the resulting drop in pH would cause the polymer to swell and release insulin.

The injectable gels would be much less invasive than surgically implanting automatic insulin delivery systems and the gels would dissolve on their own after about a week.

For potential gene therapies, the positively charged (cationic blocks) polymers can complex with DNA (negatively charged). The polymers could be used to deliver so-called suicide genes and chemotherapy drugs directly and selectively to tumors, since normal cells would be less likely to react with the polymer and express the incorporated gene.

A preliminary invivo study in rats is now underway in conjunction with the John Stoddard Cancer Center at Iowa Methodist Medical Center in Des Moines. The basic research on polymer synthesis and characterization is funded by the DOE’s Office of Basic Energy Sciences. The gene therapy and bioapplication work is funded by a Bailey Career Development Grant.


###
Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at http://www.ameslab.gov.

Contacts:
Surya Mallapragada, 515-294-7407, suryakm@iastate.edu
Kerry Gibson, Public Affairs, 515-294-1405, kgibson@ameslab.gov

Surya Mallapragada | EurekAlert!
Further information:
http://www.external.ameslab.gov/

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>