Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating polymers that act like biomolecules

01.04.2004


Ames Laboratory researchers studying self-assembling polymers



A group of bioinspired polymers are being studied by researchers at the Department of Energy’s Ames Laboratory to understand how they are able to form and react to stimuli similar to the way proteins, lipids and DNA react in nature. Unlocking how these soluble block polymers are able to self-assemble could potentially lead to a variety of uses such as controlled release systems for sustained and modulated delivery of drugs or gene therapies.

Ames Laboratory materials chemist Surya Mallapragada and her research team are focusing on pentablock polymers - polymers that form in strings of five chains. Each string is comprised of two cationic (positively charged) blocks, two hydrophilic (water loving) blocks, and one hydrophobic block. Because the hydrophobic block tries to avoid water, it forms the center of the string, with the hydrophilic next and the cationic blocks on the outside. In solution, these strings form in small clusters called micelles, again with the hydrophobic blocks at the center.


"The interesting thing about these polymers is that they respond to changes in temperature and pH," Mallapragada says. "As the temperature goes up, the micelles cluster together more, forming a polymer gel. A similar reaction takes place as pH rises - the hydrophobicity of the cationic blocks increases which also helps in gel formation."

As temperature and/or pH drops, the process reverses itself and the gels dissolve back into micelles and polymer strands. Using cryotransmission electron microscopy, Mallapragada’s group is working to understand just how these micelles look and how fast the polymers respond to changes in temperature and pH.

"Samples are plunged into liquid ethane which freezes them so quickly that ice doesn’t form and disrupt the crystal structure," she says. "We’re able to then view the gel formation at various stages (temperature and pH) under very controlled conditions." She adds that this work will be complemented by conducting x-ray scattering studies at the Advanced Photon Source facility at the DOE’s Argonne National Laboratory.

The structure appears to be the key in how the polymers react to stimuli similar to the way biomolecules react in nature. These substances carry out a wide variety of tasks, responding to subtle changes in body chemistry regulating those changes. The problem in working with proteins and similar biomolecules, according to Mallapragada, is that it is difficult to isolate the materials without damaging them.

"Biomolecules often exist in extremely small quantities," she says, "and are not very robust. In separating them from a source, they become denatured or damaged. The polymers we are studying are much more stable, readily available and therefore easier to study."

Because they are easier to work with, the polymers could potentially be modified and used as a way to deliver drugs or gene therapies. For example, incorporating the glucose oxidase enzyme in the polymer would make it sensitive to changes in glucose levels in the body. Soluble at room temperature, the polymer could be injected under the skin where it would form in a gel due to the higher temperature of the body. When the gluconic acid level falls, the resulting drop in pH would cause the polymer to swell and release insulin.

The injectable gels would be much less invasive than surgically implanting automatic insulin delivery systems and the gels would dissolve on their own after about a week.

For potential gene therapies, the positively charged (cationic blocks) polymers can complex with DNA (negatively charged). The polymers could be used to deliver so-called suicide genes and chemotherapy drugs directly and selectively to tumors, since normal cells would be less likely to react with the polymer and express the incorporated gene.

A preliminary invivo study in rats is now underway in conjunction with the John Stoddard Cancer Center at Iowa Methodist Medical Center in Des Moines. The basic research on polymer synthesis and characterization is funded by the DOE’s Office of Basic Energy Sciences. The gene therapy and bioapplication work is funded by a Bailey Career Development Grant.


###
Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at http://www.ameslab.gov.

Contacts:
Surya Mallapragada, 515-294-7407, suryakm@iastate.edu
Kerry Gibson, Public Affairs, 515-294-1405, kgibson@ameslab.gov

Surya Mallapragada | EurekAlert!
Further information:
http://www.external.ameslab.gov/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>