Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating polymers that act like biomolecules

01.04.2004


Ames Laboratory researchers studying self-assembling polymers



A group of bioinspired polymers are being studied by researchers at the Department of Energy’s Ames Laboratory to understand how they are able to form and react to stimuli similar to the way proteins, lipids and DNA react in nature. Unlocking how these soluble block polymers are able to self-assemble could potentially lead to a variety of uses such as controlled release systems for sustained and modulated delivery of drugs or gene therapies.

Ames Laboratory materials chemist Surya Mallapragada and her research team are focusing on pentablock polymers - polymers that form in strings of five chains. Each string is comprised of two cationic (positively charged) blocks, two hydrophilic (water loving) blocks, and one hydrophobic block. Because the hydrophobic block tries to avoid water, it forms the center of the string, with the hydrophilic next and the cationic blocks on the outside. In solution, these strings form in small clusters called micelles, again with the hydrophobic blocks at the center.


"The interesting thing about these polymers is that they respond to changes in temperature and pH," Mallapragada says. "As the temperature goes up, the micelles cluster together more, forming a polymer gel. A similar reaction takes place as pH rises - the hydrophobicity of the cationic blocks increases which also helps in gel formation."

As temperature and/or pH drops, the process reverses itself and the gels dissolve back into micelles and polymer strands. Using cryotransmission electron microscopy, Mallapragada’s group is working to understand just how these micelles look and how fast the polymers respond to changes in temperature and pH.

"Samples are plunged into liquid ethane which freezes them so quickly that ice doesn’t form and disrupt the crystal structure," she says. "We’re able to then view the gel formation at various stages (temperature and pH) under very controlled conditions." She adds that this work will be complemented by conducting x-ray scattering studies at the Advanced Photon Source facility at the DOE’s Argonne National Laboratory.

The structure appears to be the key in how the polymers react to stimuli similar to the way biomolecules react in nature. These substances carry out a wide variety of tasks, responding to subtle changes in body chemistry regulating those changes. The problem in working with proteins and similar biomolecules, according to Mallapragada, is that it is difficult to isolate the materials without damaging them.

"Biomolecules often exist in extremely small quantities," she says, "and are not very robust. In separating them from a source, they become denatured or damaged. The polymers we are studying are much more stable, readily available and therefore easier to study."

Because they are easier to work with, the polymers could potentially be modified and used as a way to deliver drugs or gene therapies. For example, incorporating the glucose oxidase enzyme in the polymer would make it sensitive to changes in glucose levels in the body. Soluble at room temperature, the polymer could be injected under the skin where it would form in a gel due to the higher temperature of the body. When the gluconic acid level falls, the resulting drop in pH would cause the polymer to swell and release insulin.

The injectable gels would be much less invasive than surgically implanting automatic insulin delivery systems and the gels would dissolve on their own after about a week.

For potential gene therapies, the positively charged (cationic blocks) polymers can complex with DNA (negatively charged). The polymers could be used to deliver so-called suicide genes and chemotherapy drugs directly and selectively to tumors, since normal cells would be less likely to react with the polymer and express the incorporated gene.

A preliminary invivo study in rats is now underway in conjunction with the John Stoddard Cancer Center at Iowa Methodist Medical Center in Des Moines. The basic research on polymer synthesis and characterization is funded by the DOE’s Office of Basic Energy Sciences. The gene therapy and bioapplication work is funded by a Bailey Career Development Grant.


###
Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at http://www.ameslab.gov.

Contacts:
Surya Mallapragada, 515-294-7407, suryakm@iastate.edu
Kerry Gibson, Public Affairs, 515-294-1405, kgibson@ameslab.gov

Surya Mallapragada | EurekAlert!
Further information:
http://www.external.ameslab.gov/

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>