Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog skin and supercomputers lead Penn chemists to designing better bacteria killers

31.03.2004


A peptide called magainin, first found in the skin of the African clawed frog, holds the secret to creating bacteria-killing surfaces, according to researchers at the University of Pennsylvania. The Penn scientists have taken a joint experimental-computational approach to mimicking magainin. They designed, synthesized, tested, and then improved novel antibacterial compounds, using a combination of laboratory experiments and painstaking simulations on supercomputers. The resulting material could be anchored to the surface of almost any type of product that you would prefer to keep bacteria-free – from bandages to picnic tables.



Robert Doerksen, a postdoctoral researcher in Penn’s Department of Chemistry, will present how the Penn team successfully modified the arylamide-based polymers to be safe for contact with human cells today at the American Chemical Society’s 227th National Meeting in Anaheim, Calif.

"Our original approach was to replace the peptide backbone found in magainin with one of arylamide, which is relatively easy to create in the lab," Doerksen said. "Like magainin, the modified arylamide polymer can disrupt the cell membranes of bacteria without harming the membranes of other types of cells, such as our own."


The key to both magainin and the arylamide polymers is that they are amphiphilic – one side attracts water while the other repels it. It is thought that this property of the material allows it to reach the bacterial cell membrane and induce leakage that destroys the bacteria. "Unlike conventional antibiotics, for example, the arylamide’s ability to attack a fundamental feature of all types of bacteria, their lipid membranes, will make it much more difficult for bacteria to evolve resistance," Doerksen said.


Penn researchers involved in the study include Michael L. Klein of the Department of Chemistry and William F. DeGrado of the Department of Biochemistry and Biophysics. Bin Chen of Louisiana State University and Dahui Liu, of Polymedix, Inc. also were contributing researchers. The scientific computing was performed in part at the Pittsburgh Supercomputing Center.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>