Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog skin and supercomputers lead Penn chemists to designing better bacteria killers

31.03.2004


A peptide called magainin, first found in the skin of the African clawed frog, holds the secret to creating bacteria-killing surfaces, according to researchers at the University of Pennsylvania. The Penn scientists have taken a joint experimental-computational approach to mimicking magainin. They designed, synthesized, tested, and then improved novel antibacterial compounds, using a combination of laboratory experiments and painstaking simulations on supercomputers. The resulting material could be anchored to the surface of almost any type of product that you would prefer to keep bacteria-free – from bandages to picnic tables.



Robert Doerksen, a postdoctoral researcher in Penn’s Department of Chemistry, will present how the Penn team successfully modified the arylamide-based polymers to be safe for contact with human cells today at the American Chemical Society’s 227th National Meeting in Anaheim, Calif.

"Our original approach was to replace the peptide backbone found in magainin with one of arylamide, which is relatively easy to create in the lab," Doerksen said. "Like magainin, the modified arylamide polymer can disrupt the cell membranes of bacteria without harming the membranes of other types of cells, such as our own."


The key to both magainin and the arylamide polymers is that they are amphiphilic – one side attracts water while the other repels it. It is thought that this property of the material allows it to reach the bacterial cell membrane and induce leakage that destroys the bacteria. "Unlike conventional antibiotics, for example, the arylamide’s ability to attack a fundamental feature of all types of bacteria, their lipid membranes, will make it much more difficult for bacteria to evolve resistance," Doerksen said.


Penn researchers involved in the study include Michael L. Klein of the Department of Chemistry and William F. DeGrado of the Department of Biochemistry and Biophysics. Bin Chen of Louisiana State University and Dahui Liu, of Polymedix, Inc. also were contributing researchers. The scientific computing was performed in part at the Pittsburgh Supercomputing Center.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>