Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog skin and supercomputers lead Penn chemists to designing better bacteria killers

31.03.2004


A peptide called magainin, first found in the skin of the African clawed frog, holds the secret to creating bacteria-killing surfaces, according to researchers at the University of Pennsylvania. The Penn scientists have taken a joint experimental-computational approach to mimicking magainin. They designed, synthesized, tested, and then improved novel antibacterial compounds, using a combination of laboratory experiments and painstaking simulations on supercomputers. The resulting material could be anchored to the surface of almost any type of product that you would prefer to keep bacteria-free – from bandages to picnic tables.



Robert Doerksen, a postdoctoral researcher in Penn’s Department of Chemistry, will present how the Penn team successfully modified the arylamide-based polymers to be safe for contact with human cells today at the American Chemical Society’s 227th National Meeting in Anaheim, Calif.

"Our original approach was to replace the peptide backbone found in magainin with one of arylamide, which is relatively easy to create in the lab," Doerksen said. "Like magainin, the modified arylamide polymer can disrupt the cell membranes of bacteria without harming the membranes of other types of cells, such as our own."


The key to both magainin and the arylamide polymers is that they are amphiphilic – one side attracts water while the other repels it. It is thought that this property of the material allows it to reach the bacterial cell membrane and induce leakage that destroys the bacteria. "Unlike conventional antibiotics, for example, the arylamide’s ability to attack a fundamental feature of all types of bacteria, their lipid membranes, will make it much more difficult for bacteria to evolve resistance," Doerksen said.


Penn researchers involved in the study include Michael L. Klein of the Department of Chemistry and William F. DeGrado of the Department of Biochemistry and Biophysics. Bin Chen of Louisiana State University and Dahui Liu, of Polymedix, Inc. also were contributing researchers. The scientific computing was performed in part at the Pittsburgh Supercomputing Center.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>