Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University announces ’one-step’ method to make polymer nanowires

31.03.2004


Increases versatility of conducting polymers





A powerful one-step, "chain growth" method should make it easier to design and synthesize a variety of highly conductive polymers for different research and commercial applications, according to a presentation by the method’s developer, Carnegie Mellon University chemist Richard McCullough. McCullough, dean of the Mellon College of Science and professor of chemistry, is reporting his research Tuesday, March 30, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. (POLY 360, Plaza B).

McCullough has harnessed the chain-growth method to increase the versatility of the conducting polymers, called regioregular polythiophenes. This new method allows scientists to "cap" each conducting polymer with chemical groups that link to other structural polymers (Figure 1). With this research, funded by the National Science Foundation, researchers can form highly conductive nanowire sheets within polymer blocks (Figure 2) or create a plethora of new conducting polymers.


Variations in the chemical "cap" also allow regioregular polythiophene strands to adhere directly to metal, silicon or other industrially important templates used in devices like transistors (Figure 3). They effectively self-assemble into a well-ordered, highly conducting nanoscale layers.

"The chain-growth method eliminates six production steps to create block co-polymer nanowires that conduct electricity a million times better than the all other conducting block copolymers," said McCullough.

Conducting polymers are remarkable materials that possess the electrical properties of metals yet retain the mechanical properties of polymers. In 1992 McCullough was the first to report the synthesis of regioregular polythiophenes, which in 2002 became the basis of a Carnegie Mellon spinout company, Plextronics, Inc.

The current research was conducted, in large part, by postdoctoral research fellows Malika Jeffries-El and Genevieve Sauve.

Block copolymers of regioregular polythiophenes conduct electricity so well due to their uniform composition and neat alignment into nanowires. Impurities and random orientation of polymer strands created by other methods vastly reduces their ability to conduct electricity, according to McCullough.

"A good analogy is a water hose. A bent hose transports water poorly, whereas a straight hose conducts water much more effectively. Likewise, irregularly shaped, disorganized polymers are poor conductors of electricity, whereas straight, stackable regioregular polythiophenes are excellent electrical conductors," said McCullough.

Regioregular polythiophenes have a wide range of potential applications, such as dissipating static electrical charges that build up on coated floors or use in disposable devices called radio frequency identification tags. (See www.plextronics.com for additional applications).

The superior conducting performance of regioregular polythiophenes is captured in their structure. Each polymer unit is composed of a chemical ring (thiophene) with a chemical branch on one side. Units are attached head to tail, so that all of the branches line up in one direction, much like feathers (Figure 4). The head-to-tail structure effectively straightens polythiophenes into rods that can be stacked one atop another.

To make a regioregular polythiophene polymer conductive, the scientists incorporate a pinch of a reactive additive to the polymer. This step removes some electrons from the forming polymer, thereby freeing the remaining electrons to move up and down the final polymer.

By attaching normal plastics to the polythiophene backbone, McCullough’s team can create nanowire stacks with versatile properties, such as softness and solubility in different fluids used in industrial manufacturing. Because their properties can be varied, regioregular conducting polymers have the widest range of commercial applications compared with any other conducting polymer, he said.


The Mellon College of Science at Carnegie Mellon University maintains innovative research and educational programs in biological sciences, chemistry, physics, mathematics and several interdisciplinary areas. For more information, visit http://www.cmu.edu/mcs.

Plextronics takes advantage of the vast commercial opportunities generated by these breakthroughs and has designed a new generation of matrials that enable broad market potential. For more information about Plextronics, Inc., please contact Jennifer Honig at jhonig@plextronics.com or 412-977-7703.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>