Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University announces ’one-step’ method to make polymer nanowires

31.03.2004


Increases versatility of conducting polymers





A powerful one-step, "chain growth" method should make it easier to design and synthesize a variety of highly conductive polymers for different research and commercial applications, according to a presentation by the method’s developer, Carnegie Mellon University chemist Richard McCullough. McCullough, dean of the Mellon College of Science and professor of chemistry, is reporting his research Tuesday, March 30, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. (POLY 360, Plaza B).

McCullough has harnessed the chain-growth method to increase the versatility of the conducting polymers, called regioregular polythiophenes. This new method allows scientists to "cap" each conducting polymer with chemical groups that link to other structural polymers (Figure 1). With this research, funded by the National Science Foundation, researchers can form highly conductive nanowire sheets within polymer blocks (Figure 2) or create a plethora of new conducting polymers.


Variations in the chemical "cap" also allow regioregular polythiophene strands to adhere directly to metal, silicon or other industrially important templates used in devices like transistors (Figure 3). They effectively self-assemble into a well-ordered, highly conducting nanoscale layers.

"The chain-growth method eliminates six production steps to create block co-polymer nanowires that conduct electricity a million times better than the all other conducting block copolymers," said McCullough.

Conducting polymers are remarkable materials that possess the electrical properties of metals yet retain the mechanical properties of polymers. In 1992 McCullough was the first to report the synthesis of regioregular polythiophenes, which in 2002 became the basis of a Carnegie Mellon spinout company, Plextronics, Inc.

The current research was conducted, in large part, by postdoctoral research fellows Malika Jeffries-El and Genevieve Sauve.

Block copolymers of regioregular polythiophenes conduct electricity so well due to their uniform composition and neat alignment into nanowires. Impurities and random orientation of polymer strands created by other methods vastly reduces their ability to conduct electricity, according to McCullough.

"A good analogy is a water hose. A bent hose transports water poorly, whereas a straight hose conducts water much more effectively. Likewise, irregularly shaped, disorganized polymers are poor conductors of electricity, whereas straight, stackable regioregular polythiophenes are excellent electrical conductors," said McCullough.

Regioregular polythiophenes have a wide range of potential applications, such as dissipating static electrical charges that build up on coated floors or use in disposable devices called radio frequency identification tags. (See www.plextronics.com for additional applications).

The superior conducting performance of regioregular polythiophenes is captured in their structure. Each polymer unit is composed of a chemical ring (thiophene) with a chemical branch on one side. Units are attached head to tail, so that all of the branches line up in one direction, much like feathers (Figure 4). The head-to-tail structure effectively straightens polythiophenes into rods that can be stacked one atop another.

To make a regioregular polythiophene polymer conductive, the scientists incorporate a pinch of a reactive additive to the polymer. This step removes some electrons from the forming polymer, thereby freeing the remaining electrons to move up and down the final polymer.

By attaching normal plastics to the polythiophene backbone, McCullough’s team can create nanowire stacks with versatile properties, such as softness and solubility in different fluids used in industrial manufacturing. Because their properties can be varied, regioregular conducting polymers have the widest range of commercial applications compared with any other conducting polymer, he said.


The Mellon College of Science at Carnegie Mellon University maintains innovative research and educational programs in biological sciences, chemistry, physics, mathematics and several interdisciplinary areas. For more information, visit http://www.cmu.edu/mcs.

Plextronics takes advantage of the vast commercial opportunities generated by these breakthroughs and has designed a new generation of matrials that enable broad market potential. For more information about Plextronics, Inc., please contact Jennifer Honig at jhonig@plextronics.com or 412-977-7703.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>