Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University announces ’one-step’ method to make polymer nanowires

31.03.2004


Increases versatility of conducting polymers





A powerful one-step, "chain growth" method should make it easier to design and synthesize a variety of highly conductive polymers for different research and commercial applications, according to a presentation by the method’s developer, Carnegie Mellon University chemist Richard McCullough. McCullough, dean of the Mellon College of Science and professor of chemistry, is reporting his research Tuesday, March 30, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. (POLY 360, Plaza B).

McCullough has harnessed the chain-growth method to increase the versatility of the conducting polymers, called regioregular polythiophenes. This new method allows scientists to "cap" each conducting polymer with chemical groups that link to other structural polymers (Figure 1). With this research, funded by the National Science Foundation, researchers can form highly conductive nanowire sheets within polymer blocks (Figure 2) or create a plethora of new conducting polymers.


Variations in the chemical "cap" also allow regioregular polythiophene strands to adhere directly to metal, silicon or other industrially important templates used in devices like transistors (Figure 3). They effectively self-assemble into a well-ordered, highly conducting nanoscale layers.

"The chain-growth method eliminates six production steps to create block co-polymer nanowires that conduct electricity a million times better than the all other conducting block copolymers," said McCullough.

Conducting polymers are remarkable materials that possess the electrical properties of metals yet retain the mechanical properties of polymers. In 1992 McCullough was the first to report the synthesis of regioregular polythiophenes, which in 2002 became the basis of a Carnegie Mellon spinout company, Plextronics, Inc.

The current research was conducted, in large part, by postdoctoral research fellows Malika Jeffries-El and Genevieve Sauve.

Block copolymers of regioregular polythiophenes conduct electricity so well due to their uniform composition and neat alignment into nanowires. Impurities and random orientation of polymer strands created by other methods vastly reduces their ability to conduct electricity, according to McCullough.

"A good analogy is a water hose. A bent hose transports water poorly, whereas a straight hose conducts water much more effectively. Likewise, irregularly shaped, disorganized polymers are poor conductors of electricity, whereas straight, stackable regioregular polythiophenes are excellent electrical conductors," said McCullough.

Regioregular polythiophenes have a wide range of potential applications, such as dissipating static electrical charges that build up on coated floors or use in disposable devices called radio frequency identification tags. (See www.plextronics.com for additional applications).

The superior conducting performance of regioregular polythiophenes is captured in their structure. Each polymer unit is composed of a chemical ring (thiophene) with a chemical branch on one side. Units are attached head to tail, so that all of the branches line up in one direction, much like feathers (Figure 4). The head-to-tail structure effectively straightens polythiophenes into rods that can be stacked one atop another.

To make a regioregular polythiophene polymer conductive, the scientists incorporate a pinch of a reactive additive to the polymer. This step removes some electrons from the forming polymer, thereby freeing the remaining electrons to move up and down the final polymer.

By attaching normal plastics to the polythiophene backbone, McCullough’s team can create nanowire stacks with versatile properties, such as softness and solubility in different fluids used in industrial manufacturing. Because their properties can be varied, regioregular conducting polymers have the widest range of commercial applications compared with any other conducting polymer, he said.


The Mellon College of Science at Carnegie Mellon University maintains innovative research and educational programs in biological sciences, chemistry, physics, mathematics and several interdisciplinary areas. For more information, visit http://www.cmu.edu/mcs.

Plextronics takes advantage of the vast commercial opportunities generated by these breakthroughs and has designed a new generation of matrials that enable broad market potential. For more information about Plextronics, Inc., please contact Jennifer Honig at jhonig@plextronics.com or 412-977-7703.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>