Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New family of hyperbranched polymers enhance mechanical, rheological, processing performance

30.03.2004


Hyperbranched polymers – tree-like molecules – are not particularly useful for the creation of plastic films and molded parts because they don’t entangle. So Virginia Tech researchers have created segmented hyperbranched plastics, which do entangle and result in high-performance polymers.



Virginia Tech chemistry professor Timothy E. Long of Blacksburg will describe the configuration and functionality of the new family of polymers at the 227th Annual Meeting of the American Chemical Society, being held in Anaheim, Calif., March 28 through April 1, 2004.

"We have placed extended sequences between the branch points," said Long. "Think of elastic springs. If a tree’s branches were on springs, they would more easily diffuse and entangle."


These new hyperbranched polymers have excellent mechanical properties and lower viscosities, he said "One of the holy grails of polymer science is a material with excellent mechanical properties that is very easy to process. In this instance, the properties are tensile strength and rheology. These polymers have excellent stress and strain behavior and are less resistant to flow under force or temperature compared to related linear polymers."

He said that any polymer prepared as a linear molecule can be prepared easily in the segmented hyperbranched fashion. "The potential impact is tremendous. It means that we can create higher performance fuel cell materials, biocompatible elastomers, and rapid photo-curable adhesives, for example."

Long will deliver the paper, "Synergies of macromolecular topology and functionality for performance" (POLY 293), at 8:30 a.m. Monday, March 29, in the Anaheim Coast Hotel, room Park D, as part of the P. J. Flory Education Award Symposium. Co-authors are Virginia Tech chemistry students Matthew G. McKee, Afia S. Karikari, and Serkan Unal, former student Iskender Ilgor, now of the Department of Chemistry at Koc University, Istanbul, Virginia Tech chemical engineering professor Garth L. Wilkes, and chemistry professor Thomas C. Ward.

The research was funded by an Army Research Office Multidisciplinary University Research Initiative to understand how branching can result in positive mechanical and rheological properties. Virginia Tech Intellectual Properties Inc. (www.vtip.org) has applied for a patent on the compositions and methods for preparation and Luna Innovations Inc. of Blacksburg, Va., has received a Small Business Research Program (SBIR) grant to explore some applications, related to coatings.


Contact for additional information
Dr. Long, telong@vt.edu, (540) 231-2480
Mike Martin, Virginia Tech Intellectual Properties Inc., mike@vtip.org, (540) 951-9374

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>