Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre attractive force found in mayonnaise

30.03.2004


Rice engineers find evidence of little-understood force in everyday emulsions



Scientists at Rice University have discovered that a little-understood tensile force, which was previously thought to be an oddity found only in the types of plastics used to make bulletproof vests, occurs in everyday emulsions like mayonnaise and salad dressing.

First identified about 25 years ago, the phenomenon known as "negative first normal stress difference" refers to an attractive force that is created within fluids under certain conditions.


For example, imagine two glass plates that are stacked like a sandwich, with a thin layer of liquid between. If the bottom plate is held still and the top plate is moved quickly to one side, it sets the fluid in motion, and creates forces within the fluid that, in turn, act upon the glass.

In simple fluids like water, this sliding motion creates complementary forces that tend to push the plate along in the direction that it was sliding. In more complex fluids like polymers, tension develops, creating forces that tend to push the plates apart. Around 1980, it was discovered that liquid crystalline polymers --the chief ingredients in ultrastrong fibers like Kevlar® and Zylon® -- created forces that tugged the plates together. This force is referred to as "negative normal stress," as opposed to the more common positive forces that push plates apart.

Last year, Matteo Pasquali, assistant professor of chemical engineering, and colleague professors and graduate students at Rice were trying to create a strong fiber of pure carbon nanotubes. The researchers were attempting to adapt the methods DuPont had pioneered in the creation of Kevlar, and they ended up with a solution of nanotubes that behaved like a liquid crystalline polymer. The solution exhibited negative normal stress, which was a confirmation that the nanotubes had made a liquid crystal.

At about the same time, Pasquali and graduate students Alberto Montesi and Alejandro Peña were testing emulsions of oil and water. Emulsions are combinations of two or more liquids that do not mix, and they are common in industrial settings like oil fields as well as in everyday foodstuffs like mayonnaise or vinaigrette salad dressing. In oil and water, an emulsion is created when tiny droplets of water become dispersed throughout the oil.

Pasquali, Montesi and Peña found that negative normal stress was present in their oil and water emulsions when the concentration of water droplets was in a specific range. The research was published last month in the academic journal Physical Review Letters.

"When I first saw the data, I thought we had made a mistake," said Pasquali. "My students and I joked that we must be the only lab that had ever had negative normal stresses on two systems. However, we double- and triple-checked, and the effect was still there.

"Then, we heard that Erik Hobbie’s group at the National Institute for Standards and Technology was getting similar results with suspensions of carbon nanotubes. A collaboration ensued and we all began to feel more certain that the findings -- though unusual -- were correct."

The startling results led Pasquali’s group to expand its experiments to some commonplace emulsions.

"I went to the store, bought a jar of mayonnaise and tested it," said Montesi. "I was curious to see if it showed the same negative normal stress, and it did."

The findings clearly open the door to future studies about the underlying phenomena behind negative normal stress.

"This finding opens interesting research and development opportunities," said Peña, now a senior research engineer at Schlumberger. "A better understanding of the phenomena that underlay the onset of negative normal stresses -- the interplay between the tendency of droplets to form collective structures at the microscopic level and the macroscopic behavior of emulsions in flow -- will lead to novel developments in the formulation of emulsions and other dispersed systems of practical relevance such as suspensions of solids and foams."

Pasquali added that more study is needed before practical applications will become apparent.

"It’s really too early to foresee the full range of useful applications that might arise from this new understanding of negative normal stress," said Pasquali. "Obviously, any application where there are mixtures of oil and water -- like petroleum production, food processing and the like -- could be candidates."

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>