Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique uses household humidifier to create nanocomposite materials

29.03.2004


In what may sound like a project from a high school science fair, scientists are using a household humidifier to create porous spheres a hundred times smaller than a red blood cell. The technique is a new and inexpensive way to do chemistry using sound waves, the researchers say.



In the home, ultrasonic humidifiers are used to raise humidity, reduce static electricity and ease discomfort from the common cold or cough. In the lab, chemists at the University of Illinois at Urbana-Champaign are using the devices to make complex nanocomposite materials that could prove useful as catalysts in applications ranging from refining petroleum to making pharmaceuticals. The procedure is both simple and efficient.

"Normally, the chemical effects of ultrasound (called sonochemistry) are due to intense heating of small gas bubbles as they collapse in an otherwise cold liquid," said Kenneth S. Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "But in this case we are looking at using ultrasound to make very small liquid droplets and heating them while they are separated from one another in a heated gas. It’s the inverse of what we do sonochemically."


To create their novel nanocomposite materials, Suslick, graduate student Won Hyuk Suh and research fellow Yuri Didenko start with a solution of chemical reactants and surface-stabilizing surfactants. The solution is turned into a mist using a high-frequency ultrasound generator – an ordinary household ultrasonic humidifier the researchers purchased at a local discount store.

The resulting droplets are carried by a gas stream into a furnace, where the solvent evaporates and the chemicals coalesce into inorganic-organic composite materials nanometers in size. The particles are carried to a second, hotter furnace, where the organic part burns away, leaving behind porous inorganic nanospheres. These nanospheres are then trapped in a liquid and collected by centrifuge. The entire formation process takes only a few seconds.

"Each tiny droplet serves as its own microscopic chemical reactor," Suh said. "The micron-size mist results in particles a few hundred nanometers in size."

Among the materials the chemists have created with their ultrasound induced mists are porous nanospheres that could be useful for catalytic reactions, and encapsulated nanoparticles with potential drug delivery applications. They also have formed metal balls within ceramic shells, reminiscent of decorative, hand-carved concentric ivory spheres from China. The nested nanoballs could prove useful as molecular sieves.


"Because the outer sphere is porous, we can selectively dissolve some of the core, which frees the inner ball from the shell," said Suh, who will describe and present early results from the pyrolysis generated porous nanospheres at the 227th American Chemical Society national meeting in Anaheim, Calif. Suh’s presentation will take place in Hall A of the Anaheim Convention Center.

The National Science Foundation funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>