Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique uses household humidifier to create nanocomposite materials

29.03.2004


In what may sound like a project from a high school science fair, scientists are using a household humidifier to create porous spheres a hundred times smaller than a red blood cell. The technique is a new and inexpensive way to do chemistry using sound waves, the researchers say.



In the home, ultrasonic humidifiers are used to raise humidity, reduce static electricity and ease discomfort from the common cold or cough. In the lab, chemists at the University of Illinois at Urbana-Champaign are using the devices to make complex nanocomposite materials that could prove useful as catalysts in applications ranging from refining petroleum to making pharmaceuticals. The procedure is both simple and efficient.

"Normally, the chemical effects of ultrasound (called sonochemistry) are due to intense heating of small gas bubbles as they collapse in an otherwise cold liquid," said Kenneth S. Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "But in this case we are looking at using ultrasound to make very small liquid droplets and heating them while they are separated from one another in a heated gas. It’s the inverse of what we do sonochemically."


To create their novel nanocomposite materials, Suslick, graduate student Won Hyuk Suh and research fellow Yuri Didenko start with a solution of chemical reactants and surface-stabilizing surfactants. The solution is turned into a mist using a high-frequency ultrasound generator – an ordinary household ultrasonic humidifier the researchers purchased at a local discount store.

The resulting droplets are carried by a gas stream into a furnace, where the solvent evaporates and the chemicals coalesce into inorganic-organic composite materials nanometers in size. The particles are carried to a second, hotter furnace, where the organic part burns away, leaving behind porous inorganic nanospheres. These nanospheres are then trapped in a liquid and collected by centrifuge. The entire formation process takes only a few seconds.

"Each tiny droplet serves as its own microscopic chemical reactor," Suh said. "The micron-size mist results in particles a few hundred nanometers in size."

Among the materials the chemists have created with their ultrasound induced mists are porous nanospheres that could be useful for catalytic reactions, and encapsulated nanoparticles with potential drug delivery applications. They also have formed metal balls within ceramic shells, reminiscent of decorative, hand-carved concentric ivory spheres from China. The nested nanoballs could prove useful as molecular sieves.


"Because the outer sphere is porous, we can selectively dissolve some of the core, which frees the inner ball from the shell," said Suh, who will describe and present early results from the pyrolysis generated porous nanospheres at the 227th American Chemical Society national meeting in Anaheim, Calif. Suh’s presentation will take place in Hall A of the Anaheim Convention Center.

The National Science Foundation funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>