Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University creates novel carbon nanoparticles with vast potential

29.03.2004


Innovative polymer chemistry employed




Carnegie Mellon University scientists have developed an attractive way to make discrete carbon nanoparticles for electrical components used in industry and research. This method, which employs polyacrylonitrile (PAN) as a nanoparticle precursor, is being presented by Chuanbing Tang, a Carnegie Mellon graduate student, on Sunday, March 28, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. (POLY69, Garden A). The research findings have been accepted for publication in Angewandte Chemie, International Edition.

"This work really illustrates a particularly attractive strategy in the evolution of nanotechnology," said Tomasz Kowalewski, assistant professor of chemistry at the Mellon College of Science and principal investigator on this research, which is supported by the National Science Foundation. "Our well-defined carbon nanoparticles should find a wide range of applications, especially in energy storage/conversion devices and in display technologies."


The Carnegie Mellon group is currently working on using carbon nanoparticles as active materials in field emitter arrays for flat panel screen displays. This technology to produce carbon nanostructures also could be adapted to produce solar panels that convert sunlight into electrical energy. Other applications include the development of carbon-based nanosensors or high-surface area electrodes for use in biotechnology or medicine.

The Carnegie Mellon approach is relatively low cost, simple and potentially scalable to commercial production levels, said Kowalewski, who added these are significant advantages over existing technologies to make well-defined nanostructured carbons. Using the method, PAN copolymers serving as carbon precursors can be deposited as thin films on surfaces (e.g. silicon wafers), where they can be patterned and further processed using techniques currently employed to fabricate microelectronic devices. Such a seamless manufacturing process is important to generate integrated devices and would be difficult to achieve with other methods currently used to synthesize nanostructured carbons, said Kowalewski.

The new approach is based on a method the Carnegie Mellon group previously developed to form nanostructured carbons by using block copolymers in which PAN is linked to other polymers with which it normally does not mix. In the current method, PAN, a "water-hating" compound, is copolymerized with polyacrylic acid, a "water-loving" polymer. In water-containing solutions, PAN-polyacrylic acid copolymers self assemble into nanoscale droplets, or micelles. Each micelle has a water-insoluble PAN core and a water-soluble polyacrylic acid outer coat that forms an outer shell.

To make carbon nanoparticles from micelles, the Carnegie Mellon scientists used a shell-crosslinking technique developed by team collaborator Karen Wooley, a chemist at Washington University in St. Louis. The scientists then deposited thin and ultra-thin films of these nanoparticles on various substrates. Per their previously developed method, the Carnegie Mellon team heated the nanoparticles to high temperatures in a process called pyrolysis. This step decomposed the polyacrylic acid shell scaffolding and converted the chemically stabilized PAN domains into arrays of discrete carbon nanostructures. (See figure.)

"Self assembly of copolymers can be used to pre-organize them into a variety of nanostructures for many uses," said Kowalewski. Self-assembly of block copolymers is closely related to a familiar process of phase separation of immiscible fluids (e.g., oil and water). But unlike oil and water, immiscible blocks in a copolymer are chemically linked to each other so that phase separation domains lie within a few tens of nanometers of each other. Previously, Kowalewski’s group used self assembly of PAN-containing copolymers in the bulk followed by their pyrolysis to produce arrays of carbon nanoclusters.

The Carnegie Mellon investigators used various controlled radical polymerization (CRP) methods – including one (atom radical transfer polymerization) developed by Krzysztof Matyjaszewski at Carnegie Mellon – to create their structures. CRP allows precise control of the growth of each polymer chain and can be used to extend one type of polymer chain with a different type of polymer, resulting in block copolymers. Atomic force microscopy and spectroscopic studies have shown that the Carnegie Mellon-manufactured copolymers produce well organized carbon nanostructures.


The Mellon College of Science is one of the nation’s leading innovators in polymer chemistry. For more information, please visit www.chem.cmu.edu/groups/kowalewski.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/
http://www.chem.cmu.edu/groups/kowalewski

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>