Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopowder Consisting Of Identical Particles

29.03.2004


High-quality nanopowders made of refractory ceramics are a rare and very expensive material. All known methods of their manufacturing face the same problems - scanty quantities, extensive variety of particle sizes and expensive production. Researchers from the town of Tomsk have invented and manufactured a device to produce a choice selection of particles – all particles are equal to the required size and inexpensive. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.



Researchers of the Tomsk State University jointly with their colleagues from the MIPOR research-and-production association have designed a device and manufactured with its help pilot lots of some nanopowders, including the silicon powder and the silicium nitride and silicon carbide powders. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.
The action of a new device is based on the method the researchers called “self-abrasion”. In the device, the fluid jet captures the particles and brings them upwards to the separation zone at the velocity close to the transsonic speed. The centrifugal separator separates off the thin fraction, i.e. the smallest particles. Heavy and large particles fall back to the pounding zone. The streams meet each other, but their velocities are different: they fly up at a high speed and fall down rather slowly, along with that the layer contains the non-ground material, which is constantly poured into the device. Microwhirlwinds originate at the “stream/non-ground material” border due to significant difference of velocities, the relative velocities of particles inside the microwhirlwinds reach 100 to 300 meters per second. The particles break to pieces blowing each other, friction polishing the particles.

First, the researchers guided by Yuri Birukov investigated the entire process with the help of the mathematical model. The researchers determined how many times each particle is to collide with others to get broken into pieces and then to get “ground” through to the required size and shape, what should be the device parameters and the gas velocity to get the nanopowder with predetermined characteristics at the output. Besides, in order to exclude milling of admixtures, the particles should not touch the walls of the device in the course of circulation.



‘Besides mathematical modelling there exists even more important physical modelling, i.e. experimental investigation, says Yu. A. Birukov. Experimental investigations of such complicated processes as obtaining nanopowders last for years. We have produced and tested hundreds of experimental plants within 30 years before achieving the above results.”

The results achieved are powders of silicon, silicium nitride and silicon carbide, of aluminium oxide, of tungsten carbide and of titanium, aluminium, copper and tungsten, their average particle size being 0.3 mcm (300 nanometers) and 0.5 mcm (500 nanometers). They contain practically no admixtures, and the particles are very similar in size. They suit perfectly for producing various refractory components, for example turbine blades.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>