Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanopowder Consisting Of Identical Particles


High-quality nanopowders made of refractory ceramics are a rare and very expensive material. All known methods of their manufacturing face the same problems - scanty quantities, extensive variety of particle sizes and expensive production. Researchers from the town of Tomsk have invented and manufactured a device to produce a choice selection of particles – all particles are equal to the required size and inexpensive. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.

Researchers of the Tomsk State University jointly with their colleagues from the MIPOR research-and-production association have designed a device and manufactured with its help pilot lots of some nanopowders, including the silicon powder and the silicium nitride and silicon carbide powders. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.
The action of a new device is based on the method the researchers called “self-abrasion”. In the device, the fluid jet captures the particles and brings them upwards to the separation zone at the velocity close to the transsonic speed. The centrifugal separator separates off the thin fraction, i.e. the smallest particles. Heavy and large particles fall back to the pounding zone. The streams meet each other, but their velocities are different: they fly up at a high speed and fall down rather slowly, along with that the layer contains the non-ground material, which is constantly poured into the device. Microwhirlwinds originate at the “stream/non-ground material” border due to significant difference of velocities, the relative velocities of particles inside the microwhirlwinds reach 100 to 300 meters per second. The particles break to pieces blowing each other, friction polishing the particles.

First, the researchers guided by Yuri Birukov investigated the entire process with the help of the mathematical model. The researchers determined how many times each particle is to collide with others to get broken into pieces and then to get “ground” through to the required size and shape, what should be the device parameters and the gas velocity to get the nanopowder with predetermined characteristics at the output. Besides, in order to exclude milling of admixtures, the particles should not touch the walls of the device in the course of circulation.

‘Besides mathematical modelling there exists even more important physical modelling, i.e. experimental investigation, says Yu. A. Birukov. Experimental investigations of such complicated processes as obtaining nanopowders last for years. We have produced and tested hundreds of experimental plants within 30 years before achieving the above results.”

The results achieved are powders of silicon, silicium nitride and silicon carbide, of aluminium oxide, of tungsten carbide and of titanium, aluminium, copper and tungsten, their average particle size being 0.3 mcm (300 nanometers) and 0.5 mcm (500 nanometers). They contain practically no admixtures, and the particles are very similar in size. They suit perfectly for producing various refractory components, for example turbine blades.

Sergey Komarov | alfa
Further information:

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>