Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopowder Consisting Of Identical Particles

29.03.2004


High-quality nanopowders made of refractory ceramics are a rare and very expensive material. All known methods of their manufacturing face the same problems - scanty quantities, extensive variety of particle sizes and expensive production. Researchers from the town of Tomsk have invented and manufactured a device to produce a choice selection of particles – all particles are equal to the required size and inexpensive. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.



Researchers of the Tomsk State University jointly with their colleagues from the MIPOR research-and-production association have designed a device and manufactured with its help pilot lots of some nanopowders, including the silicon powder and the silicium nitride and silicon carbide powders. The project has been funded by two foundations – the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.
The action of a new device is based on the method the researchers called “self-abrasion”. In the device, the fluid jet captures the particles and brings them upwards to the separation zone at the velocity close to the transsonic speed. The centrifugal separator separates off the thin fraction, i.e. the smallest particles. Heavy and large particles fall back to the pounding zone. The streams meet each other, but their velocities are different: they fly up at a high speed and fall down rather slowly, along with that the layer contains the non-ground material, which is constantly poured into the device. Microwhirlwinds originate at the “stream/non-ground material” border due to significant difference of velocities, the relative velocities of particles inside the microwhirlwinds reach 100 to 300 meters per second. The particles break to pieces blowing each other, friction polishing the particles.

First, the researchers guided by Yuri Birukov investigated the entire process with the help of the mathematical model. The researchers determined how many times each particle is to collide with others to get broken into pieces and then to get “ground” through to the required size and shape, what should be the device parameters and the gas velocity to get the nanopowder with predetermined characteristics at the output. Besides, in order to exclude milling of admixtures, the particles should not touch the walls of the device in the course of circulation.



‘Besides mathematical modelling there exists even more important physical modelling, i.e. experimental investigation, says Yu. A. Birukov. Experimental investigations of such complicated processes as obtaining nanopowders last for years. We have produced and tested hundreds of experimental plants within 30 years before achieving the above results.”

The results achieved are powders of silicon, silicium nitride and silicon carbide, of aluminium oxide, of tungsten carbide and of titanium, aluminium, copper and tungsten, their average particle size being 0.3 mcm (300 nanometers) and 0.5 mcm (500 nanometers). They contain practically no admixtures, and the particles are very similar in size. They suit perfectly for producing various refractory components, for example turbine blades.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>