Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue Garnets

26.03.2004


Russian researchers produce crystals of various colors and shades based on yttrium, aluminium and oxygen. Outwardly, they practically do not differ from well-known semiprecious garnet stones. However, artificially produced crystals possess higher solidity, and the color variety is much wider than that of their natural “relatives”.



Sometimes a minor thing is sufficient to change the situation beyond recognition. That is particularly important in chemistry, especially in chemistry of crystals. A crystal is like a huge building constructed from atom “bricks”: in case of one redundant atom or vice versa – and the building changes the shape, the quality of such structure decreasing. To color the crystal building, small amounts (hundredth parts) of certain metals (color promoters) are required. Such admixtures of chromium and iron make the first-class gems – rubies and sapphires – from aluminium oxide.

Nature spends several years to achieve the result, however the laboratories need one or two days to produce the same. Laboratories also grow natural garnets, but the quality has to be sacrificed to the speed. Crystals of a large size (in this case, they are convenient for the jeweller’s art) can be grown up from the melt containing silicon o?ide, aluminium oxide, ferric oxide. Yttrium-aluminium garnets without admixtures are colorless. By adding different rare-earth metals in the course of preparing these crystals, not only the desired color can be ensured to clystals, but also the required shade. The advantage of these crystals is also that the color promoters are better distributed in them, therefore, producing the crystals of uniform color and high degree of purity.


To receive the yttrium-aluminium crystal with the structure of garnet, aluminium oxide and yttrium oxide were melted down at the 3:5 proportion. The obtained mixture was ground through to formation of the 5 millimeter granules. Then the calcined powders of rare-earth metals and zirconium, hafnium or titanium were mixed with granules of the yttrium-aluminium crystal, and the mixture was placed evenly in the boat container along its length. Then the boat container was placed in the gas-vacuum chamber. The mixture melted under the heater installed in the chamber, as the boat container moved away from the heater to a cooler area, crystallization was taking place. The so-called inoculum - nucleus of crystal - is preliminarily allocated for programming the direction of crystal growth, the inoculum possessing the miniparameters of the future macrocrystal.

Thus the researchers produced analogues to natural garnets of red and green colors, as well as pale blue garnets which do not exist in the natural environment. The red coloring of yttrium-aluminium garnets is caused by inclusion of zirconium ions in the crystal structure. Increasing the amount of zirconium may intensify the color. However, the researchers failed to get the desired variety of red shades. Introduction of scandium oxide in the melt solves the problem –the deepness and evenness of the color is increased. This is how garnets of bright red through crimson color were produced. The researchers can ensure various shades of violet color, to this end, part of yttrium ions should be additionally replaced by the europium ions – and garnets of multiple violet shades will be available to jewellers.

To produce the crystals imitating all natural garnets of green shades, yttrium-aluminium garnets are used with adding of ytterbium, zirconium and cerium. Increasing the amount of cerium ions in the crystal, the color may be changed from dark-green via bright green through yellow-green. Thus, can be achieved grass green, swamp green and emerald shades. If the researchers introduce in the crystal content the metal ions, the size of which are larger than that of the yttrium ions, then the blue-green crystal will be produced to imitate emerald stones.

The color of blue garnets which do not exist in the natural environment are caused by presence of the europium, zirconium and terbium ions in the structure of yttrium-aluminium garnets. It is possible now to produce sky-blue garnet (which is outwardly very similar to aquamarine) or garnets of violet-blue color and even of bright blue color with green shade.

Transparency, high solidity, large size – all these properties make the artificially produced garnets serious rivals to natural stones in the jeweller’s art. Natural stones yield in this connection to artificial jnes and cost much more than artificial stones. The produced crystals turned out to be excellent cutting material and fit for making elegant jewelry. The main consumers of artificial crystals are major associations and jewellery enterprises in Russia and foreign countries.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>