Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blue Garnets


Russian researchers produce crystals of various colors and shades based on yttrium, aluminium and oxygen. Outwardly, they practically do not differ from well-known semiprecious garnet stones. However, artificially produced crystals possess higher solidity, and the color variety is much wider than that of their natural “relatives”.

Sometimes a minor thing is sufficient to change the situation beyond recognition. That is particularly important in chemistry, especially in chemistry of crystals. A crystal is like a huge building constructed from atom “bricks”: in case of one redundant atom or vice versa – and the building changes the shape, the quality of such structure decreasing. To color the crystal building, small amounts (hundredth parts) of certain metals (color promoters) are required. Such admixtures of chromium and iron make the first-class gems – rubies and sapphires – from aluminium oxide.

Nature spends several years to achieve the result, however the laboratories need one or two days to produce the same. Laboratories also grow natural garnets, but the quality has to be sacrificed to the speed. Crystals of a large size (in this case, they are convenient for the jeweller’s art) can be grown up from the melt containing silicon o?ide, aluminium oxide, ferric oxide. Yttrium-aluminium garnets without admixtures are colorless. By adding different rare-earth metals in the course of preparing these crystals, not only the desired color can be ensured to clystals, but also the required shade. The advantage of these crystals is also that the color promoters are better distributed in them, therefore, producing the crystals of uniform color and high degree of purity.

To receive the yttrium-aluminium crystal with the structure of garnet, aluminium oxide and yttrium oxide were melted down at the 3:5 proportion. The obtained mixture was ground through to formation of the 5 millimeter granules. Then the calcined powders of rare-earth metals and zirconium, hafnium or titanium were mixed with granules of the yttrium-aluminium crystal, and the mixture was placed evenly in the boat container along its length. Then the boat container was placed in the gas-vacuum chamber. The mixture melted under the heater installed in the chamber, as the boat container moved away from the heater to a cooler area, crystallization was taking place. The so-called inoculum - nucleus of crystal - is preliminarily allocated for programming the direction of crystal growth, the inoculum possessing the miniparameters of the future macrocrystal.

Thus the researchers produced analogues to natural garnets of red and green colors, as well as pale blue garnets which do not exist in the natural environment. The red coloring of yttrium-aluminium garnets is caused by inclusion of zirconium ions in the crystal structure. Increasing the amount of zirconium may intensify the color. However, the researchers failed to get the desired variety of red shades. Introduction of scandium oxide in the melt solves the problem –the deepness and evenness of the color is increased. This is how garnets of bright red through crimson color were produced. The researchers can ensure various shades of violet color, to this end, part of yttrium ions should be additionally replaced by the europium ions – and garnets of multiple violet shades will be available to jewellers.

To produce the crystals imitating all natural garnets of green shades, yttrium-aluminium garnets are used with adding of ytterbium, zirconium and cerium. Increasing the amount of cerium ions in the crystal, the color may be changed from dark-green via bright green through yellow-green. Thus, can be achieved grass green, swamp green and emerald shades. If the researchers introduce in the crystal content the metal ions, the size of which are larger than that of the yttrium ions, then the blue-green crystal will be produced to imitate emerald stones.

The color of blue garnets which do not exist in the natural environment are caused by presence of the europium, zirconium and terbium ions in the structure of yttrium-aluminium garnets. It is possible now to produce sky-blue garnet (which is outwardly very similar to aquamarine) or garnets of violet-blue color and even of bright blue color with green shade.

Transparency, high solidity, large size – all these properties make the artificially produced garnets serious rivals to natural stones in the jeweller’s art. Natural stones yield in this connection to artificial jnes and cost much more than artificial stones. The produced crystals turned out to be excellent cutting material and fit for making elegant jewelry. The main consumers of artificial crystals are major associations and jewellery enterprises in Russia and foreign countries.

Sergey Komarov | alfa
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>