Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metamaterials with new electromagnetic properties


The development of new types of artificial materials, known as “metamaterials” and with electromagnetic properties not found in nature, is the aim of the Metamorphose Excellence European Network, of which the Public University of Navarre forms part, together with twenty-one other research institutions from 13 European countries.

Perfect plane lenses

Metamaterials are electromagnetic and multifunctional artificial materials, created in order to comply with certain specifications. They involve materials that have properties superior to those found in nature. Development of these materials will give rise to new optical, microwave and radio technologies, based on new revolutionary materials which derive from the large-scale amalgamation of basic elements (nanoscopic and microscopic) in heretofore unprecedented combinations.

These electromagnetic materials are destined to fulfil a fundamental role in the function and enhancement of the electronic devices and components of the future, such as high-speed circuits, multifunctional and miniature aerials, high-resolution image systems and garment-integrated communication systems, amongst other applications. In the last analysis, these systems are built from substrates and superstrates the electromagnetic response functions of which determine the design and operation of systems.

For example, recently the theoretical concept for perfect planar lenses made with negative-refraction index (“left-handed”) metamaterials. These perfect lenses would enable resolution limitations in many optical and electromagnetic systems to be overcome and go beyond the diffraction limits of conventional materials. Just with this concrete example multiple applications in several information technology and life science areas can be predicted such as, for example, enhanced image systems, higher capacity systems for the optical storage of data, more compact integrated optical telecommunications solutions.

Creation of a Virtual Research Institute

The joint activities of the Metamorphose Network are to involve research on composite materials with extreme electromagnetic properties (such as left-handed mediums and materials with negative-refraction indexes), electrically controllable material, quasi- periodical fractals and structures, artificial surfaces, etc.

It can also be pointed out that the strategic aim of development of new metamaterials involves the opening of a new line of research in the multidisciplinary field of materials physics, electromagnetism, optics, radio and electronic engineering. Moreover, Metamorphose wishes to serve as a tool in joint research through the creation of a Virtual Institute which will pull together efforts in key research areas, extending excellence and transferring the new technology to European industry. This Institute is expected to continue functioning once the EU funding period expires, co-ordinating, managing and controlling the joint research projects of the participating bodies and institutions.

There is also a plan to create an international PhD programme in this new field, as well as a university school for metamaterials.

Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>