Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterials with new electromagnetic properties

25.03.2004


The development of new types of artificial materials, known as “metamaterials” and with electromagnetic properties not found in nature, is the aim of the Metamorphose Excellence European Network, of which the Public University of Navarre forms part, together with twenty-one other research institutions from 13 European countries.



Perfect plane lenses

Metamaterials are electromagnetic and multifunctional artificial materials, created in order to comply with certain specifications. They involve materials that have properties superior to those found in nature. Development of these materials will give rise to new optical, microwave and radio technologies, based on new revolutionary materials which derive from the large-scale amalgamation of basic elements (nanoscopic and microscopic) in heretofore unprecedented combinations.


These electromagnetic materials are destined to fulfil a fundamental role in the function and enhancement of the electronic devices and components of the future, such as high-speed circuits, multifunctional and miniature aerials, high-resolution image systems and garment-integrated communication systems, amongst other applications. In the last analysis, these systems are built from substrates and superstrates the electromagnetic response functions of which determine the design and operation of systems.

For example, recently the theoretical concept for perfect planar lenses made with negative-refraction index (“left-handed”) metamaterials. These perfect lenses would enable resolution limitations in many optical and electromagnetic systems to be overcome and go beyond the diffraction limits of conventional materials. Just with this concrete example multiple applications in several information technology and life science areas can be predicted such as, for example, enhanced image systems, higher capacity systems for the optical storage of data, more compact integrated optical telecommunications solutions.

Creation of a Virtual Research Institute

The joint activities of the Metamorphose Network are to involve research on composite materials with extreme electromagnetic properties (such as left-handed mediums and materials with negative-refraction indexes), electrically controllable material, quasi- periodical fractals and structures, artificial surfaces, etc.

It can also be pointed out that the strategic aim of development of new metamaterials involves the opening of a new line of research in the multidisciplinary field of materials physics, electromagnetism, optics, radio and electronic engineering. Moreover, Metamorphose wishes to serve as a tool in joint research through the creation of a Virtual Institute which will pull together efforts in key research areas, extending excellence and transferring the new technology to European industry. This Institute is expected to continue functioning once the EU funding period expires, co-ordinating, managing and controlling the joint research projects of the participating bodies and institutions.

There is also a plan to create an international PhD programme in this new field, as well as a university school for metamaterials.


Contact:
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=436&hizk=I
http://www.unavarra.es

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>