Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterials with new electromagnetic properties

25.03.2004


The development of new types of artificial materials, known as “metamaterials” and with electromagnetic properties not found in nature, is the aim of the Metamorphose Excellence European Network, of which the Public University of Navarre forms part, together with twenty-one other research institutions from 13 European countries.



Perfect plane lenses

Metamaterials are electromagnetic and multifunctional artificial materials, created in order to comply with certain specifications. They involve materials that have properties superior to those found in nature. Development of these materials will give rise to new optical, microwave and radio technologies, based on new revolutionary materials which derive from the large-scale amalgamation of basic elements (nanoscopic and microscopic) in heretofore unprecedented combinations.


These electromagnetic materials are destined to fulfil a fundamental role in the function and enhancement of the electronic devices and components of the future, such as high-speed circuits, multifunctional and miniature aerials, high-resolution image systems and garment-integrated communication systems, amongst other applications. In the last analysis, these systems are built from substrates and superstrates the electromagnetic response functions of which determine the design and operation of systems.

For example, recently the theoretical concept for perfect planar lenses made with negative-refraction index (“left-handed”) metamaterials. These perfect lenses would enable resolution limitations in many optical and electromagnetic systems to be overcome and go beyond the diffraction limits of conventional materials. Just with this concrete example multiple applications in several information technology and life science areas can be predicted such as, for example, enhanced image systems, higher capacity systems for the optical storage of data, more compact integrated optical telecommunications solutions.

Creation of a Virtual Research Institute

The joint activities of the Metamorphose Network are to involve research on composite materials with extreme electromagnetic properties (such as left-handed mediums and materials with negative-refraction indexes), electrically controllable material, quasi- periodical fractals and structures, artificial surfaces, etc.

It can also be pointed out that the strategic aim of development of new metamaterials involves the opening of a new line of research in the multidisciplinary field of materials physics, electromagnetism, optics, radio and electronic engineering. Moreover, Metamorphose wishes to serve as a tool in joint research through the creation of a Virtual Institute which will pull together efforts in key research areas, extending excellence and transferring the new technology to European industry. This Institute is expected to continue functioning once the EU funding period expires, co-ordinating, managing and controlling the joint research projects of the participating bodies and institutions.

There is also a plan to create an international PhD programme in this new field, as well as a university school for metamaterials.


Contact:
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=436&hizk=I
http://www.unavarra.es

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>