Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterials with new electromagnetic properties

25.03.2004


The development of new types of artificial materials, known as “metamaterials” and with electromagnetic properties not found in nature, is the aim of the Metamorphose Excellence European Network, of which the Public University of Navarre forms part, together with twenty-one other research institutions from 13 European countries.



Perfect plane lenses

Metamaterials are electromagnetic and multifunctional artificial materials, created in order to comply with certain specifications. They involve materials that have properties superior to those found in nature. Development of these materials will give rise to new optical, microwave and radio technologies, based on new revolutionary materials which derive from the large-scale amalgamation of basic elements (nanoscopic and microscopic) in heretofore unprecedented combinations.


These electromagnetic materials are destined to fulfil a fundamental role in the function and enhancement of the electronic devices and components of the future, such as high-speed circuits, multifunctional and miniature aerials, high-resolution image systems and garment-integrated communication systems, amongst other applications. In the last analysis, these systems are built from substrates and superstrates the electromagnetic response functions of which determine the design and operation of systems.

For example, recently the theoretical concept for perfect planar lenses made with negative-refraction index (“left-handed”) metamaterials. These perfect lenses would enable resolution limitations in many optical and electromagnetic systems to be overcome and go beyond the diffraction limits of conventional materials. Just with this concrete example multiple applications in several information technology and life science areas can be predicted such as, for example, enhanced image systems, higher capacity systems for the optical storage of data, more compact integrated optical telecommunications solutions.

Creation of a Virtual Research Institute

The joint activities of the Metamorphose Network are to involve research on composite materials with extreme electromagnetic properties (such as left-handed mediums and materials with negative-refraction indexes), electrically controllable material, quasi- periodical fractals and structures, artificial surfaces, etc.

It can also be pointed out that the strategic aim of development of new metamaterials involves the opening of a new line of research in the multidisciplinary field of materials physics, electromagnetism, optics, radio and electronic engineering. Moreover, Metamorphose wishes to serve as a tool in joint research through the creation of a Virtual Institute which will pull together efforts in key research areas, extending excellence and transferring the new technology to European industry. This Institute is expected to continue functioning once the EU funding period expires, co-ordinating, managing and controlling the joint research projects of the participating bodies and institutions.

There is also a plan to create an international PhD programme in this new field, as well as a university school for metamaterials.


Contact:
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=436&hizk=I
http://www.unavarra.es

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>