Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance towards superconductor wires

22.03.2004


Researchers at the Universitat Autònoma de Barcelona, the Materials Science Institute of Barcelona (ICMAB-CSIC), and various German and North American institutions have developed a simple method for measuring the maximum current that coated superconductors can carry. The material will, most likely, be used to manufacture the superconductor wires of the future. The research has been published in the journal, Applied Physics Letters.

Electric currents pass through superconductor materials without resistance, which is a property with many technological applications, but this is only possible when the materials are cooled below a certain temperature and when the current does not exceed a certain value.

The superconductor materials that will, most likely, be used for wires that transport electric energy are called coated conductors. They are formed by the deposition of a film of high-temperature superconductor material on a metallic band. The main advantage with respect to other types of superconductors is that they allow large quantities of electric current to move through them without the need for excessive cooling, yet they keep their superconductor qualities. This makes possible, among other things, the generating of highly intense magnetic fields with lighter superconductors and the transmission of electric current with minimum losses.



The principal limitation of these new generation materials is, however, that their microscopic structure is in the form of small grains, which limits movement through them and makes it more difficult, in each case, to know what the maximum current is that the material can carry and still maintain its characteristics of superconductivity. This information is indispensable for engineers who work on practical applications.

A team of scientists at the Materials Science Institute of Barcelona (ICMAB-CSIC) and of the Physics Department at the Universitat Autònoma de Barcelona, working with the Reference Centre for Advanced Materials for Energy (CeRMAE) of the Generalitat de Catalunya, together with researchers from the Zentrum fur Funktion Wekstoffe in Göttingen (Germany), the IFW in Dresden (Germany) and the Oak Ridge National Laboratory (United States), have developed a simple method for measuring the maximum current (called critical current) that coated superconductors can carry. The difference from other methods is that the new technique is non-invasive, i.e., it is not necessary to enter into contact with the material to measure its critical current.

The method developed by the team of researchers is based on measuring the response of the coated superconductor to the application of magnetic fields. The material undergoes a magnetic field with cyclical variations so that different maximum values are obtained; the method makes it possible to measure its critical current. Therefore, the new technique will allow engineers to calculate, in a simple way, the maximum intensity of electric current that a superconductor wire can carry without superconductivity being lost. Furthermore, the results obtained will make it possible to analyse how to improve the granular structure of the superconductor material so as to increase the current that can move through it, thereby obtaining the values required in applications such as superconductor wires for the transmission of electricity, new motors, more efficient and lighter generators, magnetically levitated trains or magnetic resonance image-generating apparatus for the human body for hospitals.

The research, led by the investigators Xavier Obradors and Teresa Puig (ICMAB-CSIC) and Àlvar Sánchez (UAB), has been published in the weekly journal, Applied Physics Letters.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>