Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance towards superconductor wires

22.03.2004


Researchers at the Universitat Autònoma de Barcelona, the Materials Science Institute of Barcelona (ICMAB-CSIC), and various German and North American institutions have developed a simple method for measuring the maximum current that coated superconductors can carry. The material will, most likely, be used to manufacture the superconductor wires of the future. The research has been published in the journal, Applied Physics Letters.

Electric currents pass through superconductor materials without resistance, which is a property with many technological applications, but this is only possible when the materials are cooled below a certain temperature and when the current does not exceed a certain value.

The superconductor materials that will, most likely, be used for wires that transport electric energy are called coated conductors. They are formed by the deposition of a film of high-temperature superconductor material on a metallic band. The main advantage with respect to other types of superconductors is that they allow large quantities of electric current to move through them without the need for excessive cooling, yet they keep their superconductor qualities. This makes possible, among other things, the generating of highly intense magnetic fields with lighter superconductors and the transmission of electric current with minimum losses.



The principal limitation of these new generation materials is, however, that their microscopic structure is in the form of small grains, which limits movement through them and makes it more difficult, in each case, to know what the maximum current is that the material can carry and still maintain its characteristics of superconductivity. This information is indispensable for engineers who work on practical applications.

A team of scientists at the Materials Science Institute of Barcelona (ICMAB-CSIC) and of the Physics Department at the Universitat Autònoma de Barcelona, working with the Reference Centre for Advanced Materials for Energy (CeRMAE) of the Generalitat de Catalunya, together with researchers from the Zentrum fur Funktion Wekstoffe in Göttingen (Germany), the IFW in Dresden (Germany) and the Oak Ridge National Laboratory (United States), have developed a simple method for measuring the maximum current (called critical current) that coated superconductors can carry. The difference from other methods is that the new technique is non-invasive, i.e., it is not necessary to enter into contact with the material to measure its critical current.

The method developed by the team of researchers is based on measuring the response of the coated superconductor to the application of magnetic fields. The material undergoes a magnetic field with cyclical variations so that different maximum values are obtained; the method makes it possible to measure its critical current. Therefore, the new technique will allow engineers to calculate, in a simple way, the maximum intensity of electric current that a superconductor wire can carry without superconductivity being lost. Furthermore, the results obtained will make it possible to analyse how to improve the granular structure of the superconductor material so as to increase the current that can move through it, thereby obtaining the values required in applications such as superconductor wires for the transmission of electricity, new motors, more efficient and lighter generators, magnetically levitated trains or magnetic resonance image-generating apparatus for the human body for hospitals.

The research, led by the investigators Xavier Obradors and Teresa Puig (ICMAB-CSIC) and Àlvar Sánchez (UAB), has been published in the weekly journal, Applied Physics Letters.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>