Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity controls nanocrystal shape

18.03.2004


Wires, tubes and brushes make it possible to build and maintain the machines and devices we use on a daily basis. Now, with help from a surprising source, these same building blocks can easily be created on a scale 10,000 times smaller than the period at the end of this sentence.


LEAD NANOPARTICLES — Scanning electron microscopy images of lead nanoparticles created with the electrodeposition technique. Shaped nanoparticles such as icosahedrons (a) and decahedrons (b) can be produced with voltages lower than 1.2 volts while elongated structures such as tripods (c) and nanobrushes (d) appear at higher voltages. The bar at the top of each image represents 500 nanometers (billionths of an inch).



Researchers at Argonne have figured out the basics of using electrochemistry to control the architecture of nanocrystals – small structures with dimensions in billionths of meters. Their findings, published in the March 3 edition of the Journal of the American Chemical Society, provide a practical method of generating large quantities of architecture-controlled nanocrystals, such as superconductors, ferromagnets and noble metals.

"The architectures of the nanocrystals are mainly controlled by applied voltages," said lead scientist Zhili Xiao of Argonne’s Materials Science Division and Northern Illinois University’s Physics Department. "This gives us much greater control over the growth conditions of the nanocrystals. We were able to create a great variety of structures with greater convenience and predictability compared with more traditional methods."


Traditional methods of fabricating nanocrystals involve rapidly injecting chemicals into a heated solution at high temperatures. The downside to this approach, however, is the difficulty of controlling the solution concentration, which changes as the reaction proceeds. This change in concentration leads to changes in the electrochemical potential – the measure of a compound’s ability to react in solution. Since a stable electrochemical potential is crucial for forming well-shaped nanocrystals, scientists using this method often found themselves struggling to control solution concentrations and to time the right moment to stop the reaction.

In contrast, Xiao and his colleagues found that they could easily control the electrochemical potential by using electric voltage. The scientists used a technique called electrodeposition, which uses electricity passing through an electrode to reduce ions from solution on a given surface. By changing the applied voltage value and the type of chemicals in the solution, the Argonne researchers were able to synthesize large quantities of nearly 30 different nanostructures, including nanoparticles of various shapes, nanowires, nanobrushes and nanoscale tripods.

"We found, for example, that shaped nanoparticles tend to form at lower voltages while higher voltages tend to produce structures such as nanowires and nanobrushes," explained Xiao.

With large quantities of these nanocrystals in hand, scientists are exploring their unique physical and chemical properties. These structures can lead to discoveries of new phenomena and applications, such as the use of ferromagnetic nanocrystals as components in ultra high-density storage media and the use of certain metal nanocrystals as catalysts for hydrogen production and sensing.

"When you alter the shape of a nanocrystal, you’re basically setting new boundaries to the space in which its electrons can move," said Wai-Kwong Kwok, leader of the Superconductivity and Magnetism group in the Materials Science Division. "This, in turn, affects its physical properties, which explains why a triangle and a sphere made of lead can have completely different superconducting properties."

The research was supported by the U.S. Department of Energy’s Office of Basic Energy Sciences and the University of Chicago-Argonne Consortium for Nanoscience Research.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Margret Chang (630/252-5549 or media@anl.gov) at Argonne.

Margret Chang | Argonne
Further information:
http://www.anl.gov/OPA/news04/news040317.htm

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>