Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity controls nanocrystal shape

18.03.2004


Wires, tubes and brushes make it possible to build and maintain the machines and devices we use on a daily basis. Now, with help from a surprising source, these same building blocks can easily be created on a scale 10,000 times smaller than the period at the end of this sentence.


LEAD NANOPARTICLES — Scanning electron microscopy images of lead nanoparticles created with the electrodeposition technique. Shaped nanoparticles such as icosahedrons (a) and decahedrons (b) can be produced with voltages lower than 1.2 volts while elongated structures such as tripods (c) and nanobrushes (d) appear at higher voltages. The bar at the top of each image represents 500 nanometers (billionths of an inch).



Researchers at Argonne have figured out the basics of using electrochemistry to control the architecture of nanocrystals – small structures with dimensions in billionths of meters. Their findings, published in the March 3 edition of the Journal of the American Chemical Society, provide a practical method of generating large quantities of architecture-controlled nanocrystals, such as superconductors, ferromagnets and noble metals.

"The architectures of the nanocrystals are mainly controlled by applied voltages," said lead scientist Zhili Xiao of Argonne’s Materials Science Division and Northern Illinois University’s Physics Department. "This gives us much greater control over the growth conditions of the nanocrystals. We were able to create a great variety of structures with greater convenience and predictability compared with more traditional methods."


Traditional methods of fabricating nanocrystals involve rapidly injecting chemicals into a heated solution at high temperatures. The downside to this approach, however, is the difficulty of controlling the solution concentration, which changes as the reaction proceeds. This change in concentration leads to changes in the electrochemical potential – the measure of a compound’s ability to react in solution. Since a stable electrochemical potential is crucial for forming well-shaped nanocrystals, scientists using this method often found themselves struggling to control solution concentrations and to time the right moment to stop the reaction.

In contrast, Xiao and his colleagues found that they could easily control the electrochemical potential by using electric voltage. The scientists used a technique called electrodeposition, which uses electricity passing through an electrode to reduce ions from solution on a given surface. By changing the applied voltage value and the type of chemicals in the solution, the Argonne researchers were able to synthesize large quantities of nearly 30 different nanostructures, including nanoparticles of various shapes, nanowires, nanobrushes and nanoscale tripods.

"We found, for example, that shaped nanoparticles tend to form at lower voltages while higher voltages tend to produce structures such as nanowires and nanobrushes," explained Xiao.

With large quantities of these nanocrystals in hand, scientists are exploring their unique physical and chemical properties. These structures can lead to discoveries of new phenomena and applications, such as the use of ferromagnetic nanocrystals as components in ultra high-density storage media and the use of certain metal nanocrystals as catalysts for hydrogen production and sensing.

"When you alter the shape of a nanocrystal, you’re basically setting new boundaries to the space in which its electrons can move," said Wai-Kwong Kwok, leader of the Superconductivity and Magnetism group in the Materials Science Division. "This, in turn, affects its physical properties, which explains why a triangle and a sphere made of lead can have completely different superconducting properties."

The research was supported by the U.S. Department of Energy’s Office of Basic Energy Sciences and the University of Chicago-Argonne Consortium for Nanoscience Research.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Margret Chang (630/252-5549 or media@anl.gov) at Argonne.

Margret Chang | Argonne
Further information:
http://www.anl.gov/OPA/news04/news040317.htm

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>