Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘T-ray’ devices with perfect imaging abilities move a step closer

04.03.2004


A team of American and British scientists has demonstrated an artificially made material that can provide a magnetic response to Terahertz frequency radiation, bringing the realisation and development of novel ‘T-ray’ devices a step closer.



The advance, reported in the journal Science (5 March), suggests many applications in biological and security imaging, biomolecular fingerprinting, remote sensing and guidance in zero visibility weather conditions, say the authors.

Theorist John Pendry of Imperial College London, also co-author of the paper, hailed the making of the material as a feat of technological virtuosity, and looked forward to some incredible applications.


“This was terra incognita, but we just pushed on to higher frequencies,” said Professor Pendry. “This is the first material to show a Terahertz frequency magnetic response; it’s the proof of concept experiment. We’ve shown we can do it, and that sends a powerful message out to the community of researchers.”

Terahertz frequencies sit in a largely unexplored region of the electromagnetic spectrum between infra-red and microwaves, known as far infra-red radiation. The frequency of a terahertz is 1 trillion cycles per second and Terahertz radiation has a wavelength between 0.1 and 1 millimetre. It is thought to be safe, as it is non-ionising and does not have DNA-damaging effects.

The authors from the University of California Los Angeles, University of California San Diego and Imperial College London, are collectively looking to build materials that respond magnetically to THz, infra-red, and visible radiation as there is an almost total absence of naturally occurring materials with magnetic responses to these frequencies.

Their quest to build such artificial materials, or metamaterials, is motivated by their desire to explore a strange and intriguing property, named ‘negative refractive index’, which is found only in this new class of materials.

Conventional optical devices are limited in resolution by the wavelength of radiation employed (eg light or X-rays), but in a series of papers building on forgotten work by Russian physicist Victor Veselago from 1968, Professor Pendry in 2000* predicted the existence of devices capable of focusing features smaller than the wavelength of light.

Referred to as ‘perfect lenses’, these revolutionary lenses break the wavelength barrier and achieve resolution limited only by the quality of the materials from which they are constructed.

Perfect lenses rely on a phenomenon theorised by Veselago who made a theoretical investigation of novel electromagnetic materials in which the normal response to both electric and magnetic fields is reversed. He referred to these materials as ‘left handed’ because the inverted response reverses the energy flow associated with a ray of light.

Amongst many strange properties of left handed materials, he found that when light is refracted from air into a left handed medium, it bends the opposite way to light entering a normal medium such as water or glass, making a chevron shape at the surface as it bends back on itself inside the left handed medium. This strange effect has subsequently been interpreted as a negative refractive index. Left handed materials are triply negative: in response to electric and magnetic fields, and also in response to a ray of light. The problem Veselago faced was that there are no such materials found in nature and this field of research was abandoned for almost thirty years.

In 1999, Professor Pendry’s Condensed Matter Theory group at Imperial College were collaborating with scientists from the Marconi Company on the new class of metamaterial. In normal materials the constituent atoms and molecules determine electrical and magnetic properties; they are much smaller than the wavelength of light so only the average response of the atoms matters. In the new materials an intermediate or meta-structure is engineered on a scale somewhere between atomic dimensions and the wavelength of radiation. The properties of Metamaterials are not limited by the periodic table and scientists can now engineer a huge range of electromagnetic responses that can be tailored to anything allowed by the laws of electromagnetism, says Professor Pendry.

The Imperial/Marconi team proposed the first design for a magnetic metamaterial, known as a ‘Split Ring’ structure. “A simple, plain ring of metal gives a magnetic response, but in the wrong direction,” says Professor Pendry, “By cutting the ring the flow of current is interrupted by capacitance across the gap which, together with the inductance of the ring, makes a tuned circuit whose resonant frequency is determined by the inductance and capacitance. It is well known that a resonant structure responds with opposite signs on either side of the resonant frequency. Hence by tuning through the resonance the desired negative magnetic response is obtained: positive or negative.”

A Split Ring viewed from above looks like a small letter ‘C’ inside a larger letter ‘C’, with the smaller C turned to face the opposite direction. A single Split Ring is the metamaterial equivalent of a magnetic atom; many Split Rings brought together in organised 2D or 3D grids form a magnetic metamaterial.

The original Split Rings were designed to operate at Gigahertz, or microwave, frequencies: orders of magnitude or hundreds or thousands of times below the Terahertz range. To get a magnetic response at Terahertz frequencies, the resonant frequency of the rings has to be raised, requiring researchers to build metamaterials with a much smaller size and spacing of the elements. The microstructure must always be much smaller than the wavelength so that radiation sees only average properties of the structure.

The key technical achievement by the authors at UCLA and UCSD was to fabricate the Terahertz-responding Split Rings using a special ‘photo-proliferated process’ that deposited the 3 micrometer-wide (0.003 mm) copper rings on a quartz base.

“This is a technological advance by the virtuosi of their craft,” said Professor Pendry of the work by his colleagues at UCLA and UCSD.

“Looking to higher frequencies, in the optical region of the spectrum, magnetism just does not at present figure in our thinking because almost all materials are magnetically inert at these frequencies.

Optical properties are almost entirely due to the electrical response of materials to one of the two available fields - the electric field. Professor Pendry likens controlling light in this way to driving a motorbike with one hand - it’s possible, but gives you only a fraction of the possible control and subtlety of resolution available in imaging. By bringing the magnetic field into play, he suggests, we may be able to harness a vastly more powerful imaging technology. “Now we are all on notice to include the possibility of optical magnetism when discussing new devices,” he adds.

“We want to push the limits of frequency and produce structures that work in the infra red and ultimately in the visible. The march of magnetism towards the visible will enhance our power to control and use electromagnetic radiation in these frequency ranges.” he said.

“So far we have only seen negative refraction at microwave or GHz frequencies but some of the most exciting applications in sensing, communication, and data storage would be at higher frequencies,” he said. “But I believe that the really valuable applications have yet to be dreamt of. Think back to when the first lasers were made, the reaction was that they were just incredible, but what the hell would we do with them?” said Professor Pendry.

The Multidisciplinary University Research Initiative (MURI) of the US Office of Naval Research (ONR Grant # N00014-01-1-0803), funded the research.


*John Pendry’s 2000 paper is Phys. Rev. Lett. 85, 3966-9 (2000)

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>