Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopowder Consisting Of Identical Particles

01.03.2004


High-quality nanopowders made of refractory ceramics are a rare and very expensive material. All known methods of their manufacturing face the same problems - scanty quantities, extensive variety of particle sizes and expensive production. Researchers from the town of Tomsk have invented and manufactured a device to produce a choice selection of particles - all particles are equal to the required size and inexpensive. The project has been funded by two foundations - the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.



Researchers of the Tomsk State University jointly with their colleagues from the MIPOR research-and-production association have designed a device and manufactured with its help pilot lots of some nanopowders, including the silicon powder and the silicium nitride and silicon carbide powders. The project has been funded by two foundations ? the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.
The action of a new device is based on the method the researchers called ?self-abrasion?. In the device, the fluid jet captures the particles and brings them upwards to the separation zone at the velocity close to the transsonic speed. The centrifugal separator separates off the thin fraction, i.e. the smallest particles. Heavy and large particles fall back to the pounding zone. The streams meet each other, but their velocities are different: they fly up at a high speed and fall down rather slowly, along with that the layer contains the non-ground material, which is constantly poured into the device. Microwhirlwinds originate at the ?stream/non-ground material? border due to significant difference of velocities, the relative velocities of particles inside the microwhirlwinds reach 100 to 300 meters per second. The particles break to pieces blowing each other, friction polishing the particles.

First, the researchers guided by Yuri Birukov investigated the entire process with the help of the mathematical model. The researchers determined how many times each particle is to collide with others to get broken into pieces and then to get ’ground’ through to the required size and shape, what should be the device parameters and the gas velocity to get the nanopowder with predetermined characteristics at the output. Besides, in order to exclude milling of admixtures, the particles should not touch the walls of the device in the course of circulation.



"Besides mathematical modelling there exists even more important physical modelling, i.e. experimental investigation", says Yu. A. Birukov. "Experimental investigations of such complicated processes as obtaining nanopowders last for years. We have produced and tested hundreds of experimental plants within 30 years before achieving the above results."

The results achieved are powders of silicon, silicium nitride and silicon carbide, of aluminium oxide, of tungsten carbide and of titanium, aluminium, copper and tungsten, their average particle size being 0.3 mcm (300 nanometers) and 0.5 mcm (500 nanometers). They contain practically no admixtures, and the particles are very similar in size. They suit perfectly for producing various refractory components, for example turbine blades. The method is not too expensive.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>