Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanopowder Consisting Of Identical Particles

01.03.2004


High-quality nanopowders made of refractory ceramics are a rare and very expensive material. All known methods of their manufacturing face the same problems - scanty quantities, extensive variety of particle sizes and expensive production. Researchers from the town of Tomsk have invented and manufactured a device to produce a choice selection of particles - all particles are equal to the required size and inexpensive. The project has been funded by two foundations - the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.



Researchers of the Tomsk State University jointly with their colleagues from the MIPOR research-and-production association have designed a device and manufactured with its help pilot lots of some nanopowders, including the silicon powder and the silicium nitride and silicon carbide powders. The project has been funded by two foundations ? the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Scale Enterprises Development in Scientific and Technological Area.
The action of a new device is based on the method the researchers called ?self-abrasion?. In the device, the fluid jet captures the particles and brings them upwards to the separation zone at the velocity close to the transsonic speed. The centrifugal separator separates off the thin fraction, i.e. the smallest particles. Heavy and large particles fall back to the pounding zone. The streams meet each other, but their velocities are different: they fly up at a high speed and fall down rather slowly, along with that the layer contains the non-ground material, which is constantly poured into the device. Microwhirlwinds originate at the ?stream/non-ground material? border due to significant difference of velocities, the relative velocities of particles inside the microwhirlwinds reach 100 to 300 meters per second. The particles break to pieces blowing each other, friction polishing the particles.

First, the researchers guided by Yuri Birukov investigated the entire process with the help of the mathematical model. The researchers determined how many times each particle is to collide with others to get broken into pieces and then to get ’ground’ through to the required size and shape, what should be the device parameters and the gas velocity to get the nanopowder with predetermined characteristics at the output. Besides, in order to exclude milling of admixtures, the particles should not touch the walls of the device in the course of circulation.



"Besides mathematical modelling there exists even more important physical modelling, i.e. experimental investigation", says Yu. A. Birukov. "Experimental investigations of such complicated processes as obtaining nanopowders last for years. We have produced and tested hundreds of experimental plants within 30 years before achieving the above results."

The results achieved are powders of silicon, silicium nitride and silicon carbide, of aluminium oxide, of tungsten carbide and of titanium, aluminium, copper and tungsten, their average particle size being 0.3 mcm (300 nanometers) and 0.5 mcm (500 nanometers). They contain practically no admixtures, and the particles are very similar in size. They suit perfectly for producing various refractory components, for example turbine blades. The method is not too expensive.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>