Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sponges provide model for nanoscale materials production

26.02.2004


"Nature was nano before nano was cool," stated Henry Fountain in a recent New York Times article on the proliferation of nanotechnology research projects. No one is more aware of this fact of nature than Dan Morse of the University of California, Santa Barbara. His research groups have been studying the ways that nature builds ocean organisms at the nanoscale for over ten years.



For example, they have studied the abalone shell for its high-performance, super-resistant, composite mineral structure.

Now they are now looking to learn new biotechnological routes to make high performance electronic and optical materials.


"We are now learning how to harness the biomolecular mechanism that directs the nanofabrication of silica in living organisms," says Morse. "This is to learn to direct the synthesis of photovoltaic and semiconductor nanocrystals of titanium dioxide, gallium oxide and other semiconductors –– materials with which nature has never built structures before."

Most recently, Morse and his students have made advances in copying the way marine sponges construct skeletal glass needles at the nanoscale. The research group is using nature’s example to produce semiconductors and photovoltaic materials in an environmentally benign way –– as they report in a recent issue of the journal Chemistry of Materials.

"Sponges are abundant right here off-shore and they provide a uniquely tractable model system that opens the paths to the discovery of the molecular mechanism that governs biological synthesis from silicon," says Morse. "This sponge produces copious quantities of fiberglass needles made from silicon and oxygen."

Morse directs the new Institute for Collaborative Biotechnologies, a UCSB-led initiative funded by a grant of $50 million from the Army Research Office, which operates in partnership with MIT and Caltech. He also directs the Marine Biotechnology Center of UCSB’s Marine Science Institute.

The work is particularly exciting, according to Morse, because silicon has been called the most important element on the planet technologically –– silicon chips are fundamental components of computers, telecommunications devices, and in combination with oxygen forms fiber optics and drives other high-tech applications.

He explains that his research group discovered that the center of the sponge’s fine glass needles contains a filament of protein that controls the synthesis of the needles. By cloning and sequencing the DNA of the gene that codes for this protein, they discovered that the protein is an enzyme that acts as a catalyst, a surprising discovery. Never before had a protein been found to serve as a catalyst to promote chemical reactions to form the glass or a rock-like material of a biomineral. From that discovery, the research group learned that this enzyme actively promotes the formation of the glass while simultaneously serving as a template to guide the shape of the growing mineral (glass) that it produces.

"Most recently in this research, which is supported by the National Oceanic and Atmospheric Administration’s Sea Grant Program and the Department of Energy, we’ve discovered that these activities can be applied to the synthesis of valuable semiconductors, metal oxides such as titanium and gallium that have photovoltaic and semiconductor properties," says Morse. The group is using a synthetic mimic of the enzymes found in marine sponges.

These discoveries are significant because they represent a low temperature, biotechnological, catalytic route to the nanostructural fabrication of valuable materials. The research group is now translating these discoveries into practical engineering.

Currently these materials are produced at very high temperatures in high vacuums, using caustic chemicals. With these latest discoveries, scientists have found that nanotechnology can copy nature and produce materials in a much more environmentally friendly way than the current state-of-the-art.


Note: Dan Morse can be reached by e-mail at : d_morse@lifesci.ucsb.edu, by telephone at : 805-893-3157; or through his assistant Paul Kirsch, at telephone : 805-893-8982 or by e-mail at: kirsch@lifesci.ucsb.edu

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>