Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Rule-breaking’ molecule could lead to non-metal magnets


Purdue University scientists have uncovered an unusual material that could lead to non-metallic magnets, which might be lighter, cheaper and easier to fabricate than magnets made of metal.

Purdue chemist Paul Wenthold stands with graduate student Tamara Munsch next to a model illustrating the unusual molecule they analyzed. The radical hydrocarbon has unpaired electrons that face in different directions, a characteristic that makes it unique among non-metallic compounds. The electrons, represented by the binders closer to Wenthold and under a diagram of the molecule itself, "stack up" in a way that can be likened to the way binders lie flat on a shelf but do not face the same direction – as they would in an ordinary radical, represented by the stack farther from him. The fundamental discovery could help in the design of new materials such as non-metal magnets. (Purdue News Service photo/David Umberger)

A team of researchers, including Paul G. Wenthold, has analyzed a radical hydrocarbon molecule whose electrons behave differently than they should, according to well-known principles. The compound is not the only molecule that exhibits such odd behavior in its surrounding cloud of electrons, but it is the first to be discovered that does not include a transition metal.

"In that respect, this is a unique exception to the electron-behavior rule, and it might help chemists think more clearly about where other exceptions lie," said Wenthold, an assistant professor of chemistry in Purdue’s School of Science. "Designing materials with novel properties depends on understanding the forces at work inside their molecules, and understanding the structure of this exceptional molecule could lead to new tools for material design."

The research, which Wenthold conducted with Anna I. Krylov of the University of Southern California and members of both their research groups, appears in today’s (2/ 2) issue of Angewandte Chemie International Edition, a major European chemistry journal. The team deduced the structure of the compound using advanced techniques, including mass spectrometry.

Radical molecules, which contain unpaired electrons and are thus more reactive than molecules without them, have gained household notoriety primarily because so-called "free radicals" in the bloodstream can damage healthy cells. While the molecule Wenthold’s team has investigated is not found in the body and has no household name – it is referred to only by its chemical description, 5-dehydro-1,3-quinodimethane – it has a property that would raise the eyebrows of any observant student in a first-year chemistry course. The surprise stems from the uncommon way its three unpaired electrons arrange themselves around the nuclei in the molecule’s atoms – an arrangement that students learn is virtually fundamental.

"It’s called Hund’s Rule," Wenthold explained. "It says that unpaired electrons line up facing the same direction when they arrange themselves around the molecular center. You might think of them as three-ring binders lying flat on shelves: You want to be able to read the labels on all of their spines, so you lay each binder flat with its spine pointing outward."

Paired electrons, he explained, would resemble two binders stacked one atop another; if their spines were both facing the same way, the top face of the upper binder would not form a flat surface, and it would tend to slide off the lower binder. None of a radical’s unpaired electrons is constrained by this need to face the opposite direction, as they all have their own "shelves," or quantum energy levels.

"Nonetheless, one of the three unpaired electrons in our molecule faces the opposite direction," Wenthold said. "Since this is the first time we’ve ever seen this happen in an organic triradical, it opens up a few new possibilities for materials designers."

Krylov said the possibilities might include the building blocks for molecular magnets.

"People are already trying to build magnets from materials other than metals, such as the polymers that form plastic," she said. "Since magnetism is related to the behavior of unpaired electrons, this compound could be used as a building block for such polymers, leading to non-metallic magnets. It could extend a materials scientist’s options."

The National Science Foundation (NSF)’s Tyrone Mitchell said that non-metallic magnets might have significant advantages over metal ones.

"Non-metal magnets would have several conceivable advantages," said Mitchell, who is program director in the NSF’s chemistry division. "If we can find ways to magnetize hydrocarbons, for example, they would weigh less than metallic magnets, making them attractive to the space program and other commercial applications in which weight is always a concern. And since the raw materials would also be cheaper and easier to fabricate than metal substances, such magnets could conceivably save money in the long run."

Wenthold and Krylov cautioned that such possibilities are only speculation for the moment, and for now the major significance of the find is the fundamental knowledge it provides.

"We still have a lot to learn about molecules such as this one," Wenthold said. "We have a long list of steps that will follow this one, such as comparing this molecule’s properties with one that does not have its unpaired electrons facing different directions. But the unique property this substance exhibits will be of interest in its own right, even before we come up with any actual applications for it. It is one thing to discover magnets – designing them is far more difficult and requires an understanding of what makes them magnets in the first place."

This research was sponsored in part by the National Science Foundation.

Writer: , (765) 494-2081,
Source: Paul Wenthold, (765) 494-0475,
Purdue News Service: (765) 494-2096;

Chad Boutin | Purdue News
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>