Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, intelligent materials for use in mechanical actuators

29.01.2004


A research team at the Department of Physics at the Public University of Navarre are developing new, “intelligent” materials which have the capacity for changing shape when a magnetic field is applied to them. These materials may be used for the generation of ultrasonic signals, in the manufacture of loudspeakers and sonars or in actuators, amongst other applications. The project is a three-year one.



Specifically, the group at the Public University of Navarre is working on the optimisation of materials which were discovered at the beginning of the nineties: metal alloys having a ferromagnetic shape memory (FSMA). These alloys have the ability to change shape under mechanical pressure, in a magnetic field or with temperature variation, and to return, in a reversible manner, to its original shape when the stimulus ceases or is removed.

Magnetic modification


The principal use for these alloys having a ferromagnetic shape memory is in the manufacture of actuators, those devices which, on the application of a magnetic field, modify their dimensions in order to carry out operations. The advantage of these devices is that the operations in question can be controlled remotely using magnetic fields, without the need to resort to manual contact. As a result of the modification of the dimensions, the actuator can press a button or carry out any other mechanical operation in an industrial process.

Moreover, these metal alloys with ferromagnetic shape memory have a capacity for changing shape much greater than that of other metals, thereby providing us with an alternative to the current piezoelectric actuators, currently the most commonly used in industrial processes.

Beyond this use, the field of application of this type of alloy stretches from the generation of ultrasonic signals (for ultrasonic cleaning or ultrasonic transducers such as those used in ecographys...), to the application of a constant force (lineal force engines, positioners...), and taking in the cores of speaker and sonar devices, vibration dampers and a whole series of devices based on piezoelectric and magnetostrictor materials.

Development of new alloys

The aim of this research project is to find new alloys having a ferromagnetic shape memory, introducing materials such as aluminium, tin, cobalt, nickel or gallium.

To achieve this, in the first place, the Public University of Navarre is studying the vibrational behaviour and the elastic constants of monocrystalline alloys, for the subsequent application thereof to the more abundant polycrystalline alloys.

The monocrystal alloys are ordered structures, perfect crystallographic networks which enable the study of their properties with ease. Nevertheless, monocrystals involve a costly and demanding manufacture process so it is the polycrystals that are more frequent in commercial applications.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>