Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New, intelligent materials for use in mechanical actuators


A research team at the Department of Physics at the Public University of Navarre are developing new, “intelligent” materials which have the capacity for changing shape when a magnetic field is applied to them. These materials may be used for the generation of ultrasonic signals, in the manufacture of loudspeakers and sonars or in actuators, amongst other applications. The project is a three-year one.

Specifically, the group at the Public University of Navarre is working on the optimisation of materials which were discovered at the beginning of the nineties: metal alloys having a ferromagnetic shape memory (FSMA). These alloys have the ability to change shape under mechanical pressure, in a magnetic field or with temperature variation, and to return, in a reversible manner, to its original shape when the stimulus ceases or is removed.

Magnetic modification

The principal use for these alloys having a ferromagnetic shape memory is in the manufacture of actuators, those devices which, on the application of a magnetic field, modify their dimensions in order to carry out operations. The advantage of these devices is that the operations in question can be controlled remotely using magnetic fields, without the need to resort to manual contact. As a result of the modification of the dimensions, the actuator can press a button or carry out any other mechanical operation in an industrial process.

Moreover, these metal alloys with ferromagnetic shape memory have a capacity for changing shape much greater than that of other metals, thereby providing us with an alternative to the current piezoelectric actuators, currently the most commonly used in industrial processes.

Beyond this use, the field of application of this type of alloy stretches from the generation of ultrasonic signals (for ultrasonic cleaning or ultrasonic transducers such as those used in ecographys...), to the application of a constant force (lineal force engines, positioners...), and taking in the cores of speaker and sonar devices, vibration dampers and a whole series of devices based on piezoelectric and magnetostrictor materials.

Development of new alloys

The aim of this research project is to find new alloys having a ferromagnetic shape memory, introducing materials such as aluminium, tin, cobalt, nickel or gallium.

To achieve this, in the first place, the Public University of Navarre is studying the vibrational behaviour and the elastic constants of monocrystalline alloys, for the subsequent application thereof to the more abundant polycrystalline alloys.

The monocrystal alloys are ordered structures, perfect crystallographic networks which enable the study of their properties with ease. Nevertheless, monocrystals involve a costly and demanding manufacture process so it is the polycrystals that are more frequent in commercial applications.

Garazi Andonegi | Basque research
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>