Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm speeds simulations of complex fluids

26.01.2004


Computer simulations play an essential role in the study of complex fluids – liquids that contain particles of different sizes. Such liquids have numerous applications, which depend on a fundamental understanding of their behavior. But the two main techniques for the atomistic simulation of liquids – the molecular dynamics technique and the Monte Carlo method – have limitations that greatly reduce their effectiveness.



As reported in the Jan. 23 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have developed a geometric cluster algorithm that makes possible the fast and accurate simulation of complex fluids.

"The main advantage of the molecular dynamics method – its ability to provide information about dynamical processes – is also its main limitation," said Erik Luijten, a professor of materials science and engineering at Illinois. "Many complex fluids contain particles of widely different sizes, which move at vastly different time scales. A simulation that faithfully captures the motions of the faster as well as the slower particles would be impractically slow."


By contrast, the Monte Carlo method can circumvent the disparity in time scales, since it is designed to extract equilibrium properties without necessarily reproducing the actual physical motion of the atoms or molecules. However, attempts to create appropriate "artificial motion" have been limited to ad hoc solutions for specific situations. Thus, a Monte Carlo method capable of efficiently simulating systems containing particles of different sizes has remained a widely pursued goal.

Luijten and graduate student Jiwen Liu have resolved this issue in a very general way by creating artificial movements of entire clusters of particles. The identification of appropriate clusters is a crucial component of the simulation.

In 1987, researchers at Carnegie Mellon University resolved a similar problem for magnetic materials by simultaneously flipping entire groups (or clusters) of magnetic spins. This finding, which relied on an intricate mathematical mapping dating back to the early 1970s, greatly accelerated calculations for model magnets. Many researchers realized that a similar approach would have an even bigger impact if it could be applied to fluids.

"Thus, a cluster algorithm for the simulation of fluids became a ’Holy Grail’ for scientists studying fluids by means of computer simulations," Luijten said. "However, magnetic materials possess a symmetry that is absent in fluids, making it apparently impossible to use the ideas that were so successful in magnets."

Exploiting an idea developed for mixtures of spheres, Luijten and Liu were able to reconcile the asymmetric nature of fluids with the mathematical foundations underlying the identification of clusters. Their simulation method utilizes a geometric cluster algorithm that identifies "natural" groups of particles on the basis of the elementary forces that act between the particles. This approach greatly accelerates the simulation of complex fluids. Indeed, the greater the disparity in size between particles, the more advantageous their method becomes.

"This algorithm provides us with a new tool to study fluids that were not previously accessible by simulations," Luijten said. "It has the potential to advance our understanding of a great variety of liquid systems."


The U.S. Department of Energy and the National Science Foundation funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/news/04/0123luijten.html

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>